Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806864553> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2806864553 abstract "Machine learning technology has taken quantum leaps in the past few years. From the rise of voice recognition as an interface to interact with our computers, to self-organising photo albums and self-driving cars. Neural networks and deep learning contributed significantly to drive this revolution. Yet, biomedicine is one of the research areas that has yet to fully embrace the possibilities of deep learning. Engaged in a cross-disciplinary subject, researchers, and clinical experts are focused on machine learning and statistical signal processing techniques. The ability to learn hierarchical features makes deep learning models highly applicable to biomedicine and researchers have started to notice this. The first works of deep learning in biomedicine are emerging with applications in diagnostics and genomics analysis. These models offer excellent accuracy, even comparable to that of human doctors. Despite the exceptional classification performance of these models, they are still used to provide textit{quantitative} results. Diagnosing cancer proficiently and faster than a human doctor is beneficial, but automatically finding which biomarkers indicate the existence of cancerous cells would be invaluable. This type of textit{qualitative} insight can be enabled by the hierarchical features and learning coefficients that manifest in deep models. It is this textit{qualitative} approach that enables the interpretability of data and explainability of neural networks for biomedicine, which is the overarching aim of this thesis. As such, the aim of this thesis is to investigate the use of neural networks and deep learning models for the qualitative assessment of biomedical datasets. The first contribution is the proposition of a non-iterative, data agnostic feature selection algorithm to retain original features and provide qualitative analysis on their importance. This algorithm is employed in numerous areas including Pima Indian diabetes and children tumour detection. Next, the thesis focuses on the topic of epilepsy studied through scalp and intracranial electroencephalogram recordings of human brain activity. The second contribution promotes the use of deep learning models for the automatic generation of clinically meaningful features, as opposed to traditional handcrafted features. Convolutional neural networks are adapted to accommodate the intricacies of electroencephalogram data and trained to detect epileptiform discharges. The learning coefficients of these models are examined and found to contain clinically significant features. When combined, in a hierarchical way, these features reveal useful insights for the evaluation of treatment effectivity. The final contribution addresses the difficulty in acquiring intracranial data due to the invasive nature of the recording procedure. A non-linear brain mapping algorithm is proposed to link the electrical activities recorded on the scalp to those inside the cranium. This process improves the generalisation of models and alleviates the need for surgical procedures. %This is accomplished via an asymmetric autoencoder that accounts for differences in the dimensionality of the electroencephalogram data and improves the quality of the data." @default.
- W2806864553 created "2018-06-13" @default.
- W2806864553 creator A5020656621 @default.
- W2806864553 date "2018-02-28" @default.
- W2806864553 modified "2023-09-27" @default.
- W2806864553 title "Interpreting biomedical data via deep neuralnetworks." @default.
- W2806864553 cites W1573503290 @default.
- W2806864553 cites W1667249920 @default.
- W2806864553 cites W1849277567 @default.
- W2806864553 cites W1978581090 @default.
- W2806864553 cites W1984874881 @default.
- W2806864553 cites W2016589492 @default.
- W2806864553 cites W2023695846 @default.
- W2806864553 cites W2037275345 @default.
- W2806864553 cites W2071113377 @default.
- W2806864553 cites W2119191234 @default.
- W2806864553 cites W2130947713 @default.
- W2806864553 cites W2141578547 @default.
- W2806864553 cites W2170088360 @default.
- W2806864553 cites W2553303224 @default.
- W2806864553 hasPublicationYear "2018" @default.
- W2806864553 type Work @default.
- W2806864553 sameAs 2806864553 @default.
- W2806864553 citedByCount "0" @default.
- W2806864553 crossrefType "dissertation" @default.
- W2806864553 hasAuthorship W2806864553A5020656621 @default.
- W2806864553 hasConcept C106159729 @default.
- W2806864553 hasConcept C108583219 @default.
- W2806864553 hasConcept C119857082 @default.
- W2806864553 hasConcept C154945302 @default.
- W2806864553 hasConcept C162324750 @default.
- W2806864553 hasConcept C17744445 @default.
- W2806864553 hasConcept C199539241 @default.
- W2806864553 hasConcept C2522767166 @default.
- W2806864553 hasConcept C2777705401 @default.
- W2806864553 hasConcept C2779913896 @default.
- W2806864553 hasConcept C2781067378 @default.
- W2806864553 hasConcept C41008148 @default.
- W2806864553 hasConcept C50644808 @default.
- W2806864553 hasConcept C60644358 @default.
- W2806864553 hasConcept C66782513 @default.
- W2806864553 hasConcept C86803240 @default.
- W2806864553 hasConceptScore W2806864553C106159729 @default.
- W2806864553 hasConceptScore W2806864553C108583219 @default.
- W2806864553 hasConceptScore W2806864553C119857082 @default.
- W2806864553 hasConceptScore W2806864553C154945302 @default.
- W2806864553 hasConceptScore W2806864553C162324750 @default.
- W2806864553 hasConceptScore W2806864553C17744445 @default.
- W2806864553 hasConceptScore W2806864553C199539241 @default.
- W2806864553 hasConceptScore W2806864553C2522767166 @default.
- W2806864553 hasConceptScore W2806864553C2777705401 @default.
- W2806864553 hasConceptScore W2806864553C2779913896 @default.
- W2806864553 hasConceptScore W2806864553C2781067378 @default.
- W2806864553 hasConceptScore W2806864553C41008148 @default.
- W2806864553 hasConceptScore W2806864553C50644808 @default.
- W2806864553 hasConceptScore W2806864553C60644358 @default.
- W2806864553 hasConceptScore W2806864553C66782513 @default.
- W2806864553 hasConceptScore W2806864553C86803240 @default.
- W2806864553 hasLocation W28068645531 @default.
- W2806864553 hasOpenAccess W2806864553 @default.
- W2806864553 hasPrimaryLocation W28068645531 @default.
- W2806864553 hasRelatedWork W2884619956 @default.
- W2806864553 hasRelatedWork W2899695511 @default.
- W2806864553 hasRelatedWork W2913024945 @default.
- W2806864553 hasRelatedWork W2956998909 @default.
- W2806864553 hasRelatedWork W2999634272 @default.
- W2806864553 hasRelatedWork W3015879326 @default.
- W2806864553 hasRelatedWork W3021138682 @default.
- W2806864553 hasRelatedWork W3037831264 @default.
- W2806864553 hasRelatedWork W3084778936 @default.
- W2806864553 hasRelatedWork W3112040275 @default.
- W2806864553 hasRelatedWork W3112557529 @default.
- W2806864553 hasRelatedWork W3119621372 @default.
- W2806864553 hasRelatedWork W3126844834 @default.
- W2806864553 hasRelatedWork W3128431052 @default.
- W2806864553 hasRelatedWork W3134084943 @default.
- W2806864553 hasRelatedWork W3171336601 @default.
- W2806864553 hasRelatedWork W3187181762 @default.
- W2806864553 hasRelatedWork W3205848976 @default.
- W2806864553 hasRelatedWork W3207930677 @default.
- W2806864553 hasRelatedWork W2562483444 @default.
- W2806864553 isParatext "false" @default.
- W2806864553 isRetracted "false" @default.
- W2806864553 magId "2806864553" @default.
- W2806864553 workType "dissertation" @default.