Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806889580> ?p ?o ?g. }
- W2806889580 endingPage "23" @default.
- W2806889580 startingPage "11" @default.
- W2806889580 abstract "Biocrusts are a critical biological community that represents one of the most important photosynthetic biomass pools in dryland regions. Thus, they play an important role in CO2 fluxes in these regions, where water availability limits vascular plant growth and development. The effect of biocrusts on CO2 fluxes was expected to be controlled by the interplay of several environmental factors, as well as biocrust developmental stage and coverage. To test this hypothesis, we performed an in situ study during which we measured net CO2 fluxes and dark respiration over biocrusted soils at different successional stages in two semiarid ecosystems, where biocrusts are one of the main surface components. In addition, CO2 flux was measured in annual plants, which were an abundant interplant cover in one of the study sites during the measurement period. Field campaigns were conducted from early morning to dusk on selected days with different environmental conditions over the year. Gross photosynthesis was calculated from net CO2 flux and dark respiration. Biocrusts showed contrasting responses in CO2 exchange depending on environmental conditions during the day and the year and depending on biocrust developmental stage. CO2 flux in biocrusts was highly correlated with soil moisture, but also with photosynthetically active radiation and temperature. During dry soil periods, soils colonized by biocrusts had net CO2 fluxes close to zero, but after precipitation events (light or heavy) all the biocrust types began to photosynthesize. When the rainfall was right after an extended drought, the respiration by biocrusts themselves and underlying soil exceeded the biocrust gross photosynthesis, and consequently soils colonized by biocrusts behaved as CO2 sources. On the contrary, consecutive precipitation events and mild temperatures caused soil colonization by biocrusts to behave as CO2 sinks. Annual plants were measured during their senescence and acted as CO2 sources during all measurement campaigns. The time of day when the biocrusts showed net CO2 fixation depended on the interplay of humidity just above them, air temperature and photosynthetically active radiation. The biocrust type also significantly influenced CO2 fluxes in both semiarid ecosystems. In general, during wet periods, late successional biocrusts (i.e. lichens and mosses) had higher gross photosynthesis than early successional biocrusts (developed and incipient cyanobacteria crusts). Nevertheless, dark respiration from late successional biocrusts and underlying soils was also higher than from early successional biocrusts, so both biocrust types had similar net CO2 fluxes. These results highlight the importance of considering the whole soil profile under biocrusts with their associated microbial communities as well as the temporal variability of CO2 fluxes in soils covered by biocrusts in carbon balance studies in semiarid regions." @default.
- W2806889580 created "2018-06-13" @default.
- W2806889580 creator A5013081203 @default.
- W2806889580 creator A5014096010 @default.
- W2806889580 creator A5032987984 @default.
- W2806889580 creator A5067737849 @default.
- W2806889580 creator A5068256797 @default.
- W2806889580 creator A5074473373 @default.
- W2806889580 creator A5081883788 @default.
- W2806889580 date "2018-09-01" @default.
- W2806889580 modified "2023-10-18" @default.
- W2806889580 title "Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems" @default.
- W2806889580 cites W1518650855 @default.
- W2806889580 cites W1546999465 @default.
- W2806889580 cites W1675122007 @default.
- W2806889580 cites W1965460120 @default.
- W2806889580 cites W1966439471 @default.
- W2806889580 cites W1968367987 @default.
- W2806889580 cites W1971695042 @default.
- W2806889580 cites W1971825664 @default.
- W2806889580 cites W1972355671 @default.
- W2806889580 cites W1973675330 @default.
- W2806889580 cites W1978073012 @default.
- W2806889580 cites W1978827469 @default.
- W2806889580 cites W1980425421 @default.
- W2806889580 cites W1980951369 @default.
- W2806889580 cites W1982811113 @default.
- W2806889580 cites W1985151592 @default.
- W2806889580 cites W1991984697 @default.
- W2806889580 cites W2002044452 @default.
- W2806889580 cites W2005449827 @default.
- W2806889580 cites W2008371205 @default.
- W2806889580 cites W2008667240 @default.
- W2806889580 cites W2010917543 @default.
- W2806889580 cites W2012994935 @default.
- W2806889580 cites W2016934035 @default.
- W2806889580 cites W2021769723 @default.
- W2806889580 cites W2023412617 @default.
- W2806889580 cites W2024402093 @default.
- W2806889580 cites W2026173992 @default.
- W2806889580 cites W2030685159 @default.
- W2806889580 cites W2031111921 @default.
- W2806889580 cites W2032986314 @default.
- W2806889580 cites W2035429675 @default.
- W2806889580 cites W2037296696 @default.
- W2806889580 cites W2043853886 @default.
- W2806889580 cites W2044099825 @default.
- W2806889580 cites W2053132002 @default.
- W2806889580 cites W2056122182 @default.
- W2806889580 cites W2061971937 @default.
- W2806889580 cites W2064853038 @default.
- W2806889580 cites W2066814891 @default.
- W2806889580 cites W2067165518 @default.
- W2806889580 cites W2070019750 @default.
- W2806889580 cites W2072464922 @default.
- W2806889580 cites W2073517111 @default.
- W2806889580 cites W2074509617 @default.
- W2806889580 cites W2074774410 @default.
- W2806889580 cites W2077029599 @default.
- W2806889580 cites W2078660480 @default.
- W2806889580 cites W2079836758 @default.
- W2806889580 cites W2081719320 @default.
- W2806889580 cites W2084786161 @default.
- W2806889580 cites W2086689349 @default.
- W2806889580 cites W2091672286 @default.
- W2806889580 cites W2092098963 @default.
- W2806889580 cites W2092848961 @default.
- W2806889580 cites W2097347361 @default.
- W2806889580 cites W2100051617 @default.
- W2806889580 cites W2100982055 @default.
- W2806889580 cites W2109981765 @default.
- W2806889580 cites W2111890582 @default.
- W2806889580 cites W2112970691 @default.
- W2806889580 cites W2113584692 @default.
- W2806889580 cites W2114547788 @default.
- W2806889580 cites W2115131246 @default.
- W2806889580 cites W2117044011 @default.
- W2806889580 cites W2126743678 @default.
- W2806889580 cites W2132181010 @default.
- W2806889580 cites W2133807150 @default.
- W2806889580 cites W2142221791 @default.
- W2806889580 cites W2144459968 @default.
- W2806889580 cites W2148632523 @default.
- W2806889580 cites W2158404729 @default.
- W2806889580 cites W2161727473 @default.
- W2806889580 cites W2280957797 @default.
- W2806889580 cites W2325561906 @default.
- W2806889580 cites W2325834236 @default.
- W2806889580 cites W2473698975 @default.
- W2806889580 cites W2483325940 @default.
- W2806889580 cites W2566396400 @default.
- W2806889580 cites W2591310990 @default.
- W2806889580 cites W2789763523 @default.
- W2806889580 cites W4246249695 @default.
- W2806889580 doi "https://doi.org/10.1016/j.soilbio.2018.05.020" @default.
- W2806889580 hasPublicationYear "2018" @default.
- W2806889580 type Work @default.
- W2806889580 sameAs 2806889580 @default.