Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806913979> ?p ?o ?g. }
- W2806913979 endingPage "112" @default.
- W2806913979 startingPage "95" @default.
- W2806913979 abstract "Clinical Insights: Staphylococcus aureus Antibiotic Resistance Role of rapid diagnostics in selecting optimal therapy for Staphylococcus aureus infectionsRichard A Proctor & Drew SmithRichard A ProctorRichard A Proctor is Professor Emeritus in the Departments of Medicine and Medical Microbiology, University of Wisconsin Medical School in Madison (USA), retired from Merck (PA, USA) as the Global Director for Infectious Diseases for Antibiotics and Antifungals, and continues an active consulting career for industry/universities/research funding agencies; collaborating with multiple university professors and companies doing research on staphylococcal infections, new antimicrobials and rapid diagnostics; giving lectures on infectious diseases; and reviewing manuscripts for journals. Most recently, he has been involved in the assessment of staphylococcal vaccine immunology and rapid diagnostics for Staphylococcus aureus infections. His work includes studies of receptors that regulate macrophage activation during endotoxemia, small-colony variants in staphylococcal infections, bacterial energetics, the protective immune response to S. aureus infections, antimicrobial resistance and bloodstream infections caused by small-colony variants of coagulase-negative staphylococci following pacemaker placements.Search for more papers by this author & Drew SmithDrew Smith was a founding scientist at NeXagen (later NeXstar) in CO, USA, where he published the first demonstration of therapeutic efficacy in an animal model of disease by an aptamer drug candidate. He joined MicroPhage (CO, USA) in 2006 as Director of R&D, where his team developed a bacteriophage-based test for S. aureus bloodstream infections, which was recognized by R&D Magazine as one of the top 100 inventions of 2010. As Chief Science Officer and interim CEO, he was responsible for US FDA clearance of MicroPhage’s (CO, USA) KeyPath™ MRSA/MSSA blood culture test. He left MicroPhage in 2012 and is now consulting for biotechnology and in vitro diagnostics start-ups.Search for more papers by this authorPublished Online:9 Jul 2014https://doi.org/10.2217/ebo.13.688AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInReddit View chapterAbstract: Summary Staphylococcus aureus infections continue to be a major cause of morbidity and mortality both within and outside of hospitals [1,2]. Many studies have shown that patient outcomes are improved when the best antibiotic therapy can be selected using evidence-based diagnostic tools. This is especially true in critically ill patients where delaying optimal therapy is associated with a dramatic increase in mortality when the best therapy is delayed by just a few hours [3,4]. Of course, optimal therapy means that an antibiotic is chosen that has activity against the infecting organism. For decades, this choice was based primarily on microbial identification, but with the rise of widespread resistance, identification is no longer sufficient to make an informed choice of antimicrobial therapies – susceptibility testing is also required. References1 Gould IM , Reilly J , Bunyan D , Walker A . Costs of healthcare-associated methicillin-resistant Staphylococcus aureus and its control . Clin. Microbiol. Infect. 16 (12) , 1721 – 1728 (2010) . Crossref, Medline, CAS, Google Scholar2 David MZ , Daum RS . Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic . Clin. Microbiol. Rev. 23 (3) , 616 – 687 (2010) . Crossref, Medline, CAS, Google Scholar3 Barie PS , Hydo LJ , Shou J , Larone DH , Eachempati SR . Influence of antibiotic therapy on mortality of critical surgical illness caused or complicated by infection . Surg. Infect. (Larchmt) . 6 (1) , 41 – 54 (2005) . Crossref, Medline, Google Scholar4 Kumar A , Roberts D , Wood KE et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock . Crit. Care Med. 34 (6) , 1589 – 1596 (2006) . Crossref, Medline, Google Scholar5 van Hal SJ , Paterson DL . New Gram-positive antibiotics: better than vancomycin? Curr. Opin. Infect. Dis. 24 (6) , 515 – 520 (2011) . Crossref, Medline, CAS, Google Scholar6 Schweizer ML , Furuno JP , Harris AD et al. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia . BMC Infect. Dis. 11 279 (2011) . Crossref, Medline, CAS, Google Scholar7 Kim SH , Kim KH , Kim HB et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia . Antimicrob. Agents Chemother. 52 (1) , 192 – 197 (2008) . Crossref, Medline, CAS, Google Scholar8 Holmes NE , Johnson PD , Howden BP . Relationship between vancomycin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, high vancomycin MIC, and outcome in serious S. aureus infections . J. Clin. Microbiol. 50 (8) , 2548 – 2552 (2012) . Crossref, Medline, Google Scholar9 Chan KE , Warren HS , Thadhani RI et al. Prevalence and outcomes of antimicrobial treatment for Staphylococcus aureus bacteremia in outpatients with ESRD . J. Am. Soc. Nephrol. 23 (9) , 1551 – 1559 (2012) . Crossref, Medline, CAS, Google Scholar10 Lowy FD Staphylococcus aureus infections . N. Engl. J. Med. 339 (8) , 520 – 532 (1998) . Crossref, Medline, CAS, Google Scholar11 Rasmussen RV , Fowler VG Jr , Skov R , Bruun NE . Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA . Future Microbiol. 6 (1) , 43 – 56 (2011) . Link, CAS, Google Scholar12 Varettas K , Mukerjee C , Taylor PC . Anticoagulant carryover may influence clot formation in direct tube coagulase tests from blood cultures . J. Clin. Microbiol. 43 (9) , 4613 – 4615 (2005) . Crossref, Medline, CAS, Google Scholar13 Bates DW , Lee TH . Rapid classification of positive blood cultures. prospective validation of a multivariate algorithm . JAMA 267 (14) , 1962 – 1966 (1992) . Crossref, Medline, CAS, Google Scholar14 van Hal SJ , Fowler VG Jr . Is it time to replace vancomycin in the treatment of methicillin-resistant Staphylococcus aureus infections? Clin. Infect. Dis. 56 (12) , 1779 – 1788 (2013) . Crossref, Medline, Google Scholar15 Wi YM , Kim JM , Joo EJ et al. High vancomycin minimum inhibitory concentration is a predictor of mortality in meticillin-resistant Staphylococcus aureus bacteraemia . Int. J. Antimicrob. Agents 40 (2) , 108 – 113 (2012) . Crossref, Medline, CAS, Google Scholar16 Gasch O , Camoez M , Dominguez MA et al. Predictive factors for early mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia . J. Antimicrob. Chemother. 68 (6) , 1423 – 1430 (2013) . Crossref, Medline, CAS, Google Scholar17 Gonzalez V , Padilla E , Gimenez M et al. Rapid diagnosis of Staphylococcus aureus bacteremia using S. aureus PNA FISH . Eur. J. Clin. Microbiol. Infect. Dis. 23 (5) , 396 – 398 (2004) . Crossref, Medline, CAS, Google Scholar18 Oliveira K , Procop GW , Wilson D , Coull J , Stender H . Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes . J. Clin. Microbiol. 40 (1) , 247 – 251 (2002) . Crossref, Medline, CAS, Google Scholar19 Chapin K , Musgnug M . Evaluation of three rapid methods for the direct identification of Staphylococcus aureus from positive blood cultures . J. Clin. Microbiol. 41 (9) , 4324 – 4327 (2003) . Crossref, Medline, Google Scholar20 Harris DM , Hata DJ . Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal fluid cultures: A retrospective clinical study . Ann. Clin. Microbiol. Antimicrob. 12 (1) , 2 (2013) . Crossref, Medline, Google Scholar21 Carretto E , Bardaro M , Russello G , Mirra M , Zuelli C , Barbarini D . Comparison of the Staphylococcus QuickFISH BC test with the tube coagulase test performed on positive blood cultures for evaluation and application in a clinical routine setting . J. Clin. Microbiol. 51 (1) , 131 – 135 (2013) . Crossref, Medline, CAS, Google Scholar22 Kaushik D , Rathi S , Jain A . Ceftaroline: a comprehensive update . Int. J. Antimicrob. Agents 37 (5) , 389 – 395 (2011) . Crossref, Medline, CAS, Google Scholar23 Murakami K , Minamide W , Wada K , Nakamura E , Teraoka H , Watanabe S . Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction . J. Clin. Microbiol. 29 (10) , 2240 – 2244 (1991) . Crossref, Medline, CAS, Google Scholar24 Predari SC , Ligozzi M , Fontana R . Genotypic identification of methicillin-resistant coagulase-negative staphylococci by polymerase chain reaction . Antimicrob. Agents Chemother. 35 (12) , 2568 – 2573 (1991) . Crossref, Medline, CAS, Google Scholar25 Witte W , Enright M , Schmitz FJ , Cuny C , Braulke C , Heuck D . Characterization of a new epidemic MRSA in Germany ancestral to United Kingdom . Int. J. Med. Micobiol. 290 , 677 – 682 (2001) . Crossref, Medline, CAS, Google Scholar26 Boyle-Vavra S , Daum RS . Reliability of the BD GeneOhm methicillin-resistant Staphylococcus aureus (MRSA) assay in detecting MRSA isolates with a variety of genotypes from the United States and Taiwan . J. Clin. Microbiol. 48 (12) , 4546 – 4551 (2010) . Crossref, Medline, Google Scholar27 Laurent F , Chardon H , Haenni M et al. MRSA harboring mecA variant gene mecC, France . Emerg. Infect. Dis. 18 (9) , 1465 – 1467 (2012) . Crossref, Medline, CAS, Google Scholar28 Basset P , Prod’hom G , Senn L , Greub G , Blanc DS . Very low prevalence of meticillin-resistant Staphylococcus aureus carrying the mecC gene in western switzerland . J. Hosp. Infect. 83 (3) , 257 – 259 (2013) . Crossref, Medline, CAS, Google Scholar29 Pinho MG , de Lencastre H , Tomasz A . Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus . J. Bacteriol. 182 (4) , 1074 – 1079 (2000) . Crossref, Medline, CAS, Google Scholar30 Snyder JW , Munier GK , Johnson CL . Comparison of the BD GeneOhm methicillin-resistant Staphylococcus aureus (MRSA) PCR assay to culture by use of BBL CHROMagar MRSA for detection of MRSA in nasal surveillance cultures from intensive care unit patients . J. Clin. Microbiol. 48 (4) , 1305 – 1309 (2010) . Crossref, Medline, Google Scholar31 Desjardins M , Guibord C , Lalonde B , Toye B , Ramotar K . Evaluation of the IDI-MRSA assay for detection of methicillin-resistant Staphylococcus aureus from nasal and rectal specimens pooled in a selective broth . J. Clin. Microbiol. 44 (4) , 1219 – 1223 (2006) . Crossref, Medline, CAS, Google Scholar32 Farley JE , Stamper PD , Ross T , Cai M , Speser S , Carroll KC . Comparison of the BD GeneOhm methicillin-resistant Staphylococcus aureus (MRSA) PCR assay to culture by use of BBL CHROMagar MRSA for detection of MRSA in nasal surveillance cultures from an at-risk community population . J. Clin. Microbiol. 46 (2) , 743 – 746 (2008) . Crossref, Medline, CAS, Google Scholar33 Bhowmick T , Mirrett S , Reller LB et al. Controlled multicenter evaluation of a bacteriophage-based method for rapid detection of Staphylococcus aureus in positive blood cultures . J. Clin. Microbiol. 51 (4) , 1226 – 1230 (2013) . Crossref, Medline, CAS, Google Scholar34 Dreiling B , Reed K , Steinmark T , Manna D , Smith D . The KeyPath MRSA/MSSA blood culture test – BT accurately identifies S. aureus isolates that carry incomplete SCC elements (mecA dropouts) as MSSA. Presented at: 49th Annual Meeting of the Infectious Disease Society of America. Boston, MA, USA, 20–23 October 2011 . Google Scholar35 Arias CA , Murray BE . The rise of the Enterococcus: Beyond vancomycin resistance . Nat. Rev. Microbiol. 10 (4) , 266 – 278 (2012) . Crossref, Medline, CAS, Google Scholar36 Schultsz C , Geerlings S . Plasmid-mediated resistance in Enterobacteriaceae: Changing landscape and implications for therapy . Drugs 72 (1) , 1 – 16 (2012) . Crossref, Medline, CAS, Google Scholar37 Tenover FC . Mechanisms of antimicrobial resistance in bacteria . Am. J. Med. 119 (6 Suppl. 1) , S3 – S10 (2006) . Crossref, Medline, CAS, Google Scholar38 Hafer C , Lin Y , Kornblum J , Lowy FD , Uhlemann AC . Contribution of selected gene mutations to resistance in clinical isolates of vancomycin-intermediate Staphylococcus aureus . Antimicrob. Agents Chemother. 56 (11) , 5845 – 5851 (2012) . Crossref, Medline, CAS, Google Scholar39 Howden BP , Peleg AY , Stinear TP . The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA . Infect. Genet. Evol. doi:10.1016/j.meegid.2013.03.047 (2013) (Epub ahead of print) . Google Scholar40 Ender M , McCallum N , Berger-Bachi B . Impact of mecA promoter mutations on mecA expression and beta-lactam resistance levels . Int. J. Med. Microbiol. 298 (7–8) 607 – 617 (2008) . Crossref, Medline, CAS, Google Scholar41 Berger-Bachi B . Genetic basis of methicillin resistance in Staphylococcus aureus . Cell. Mol. Life Sci. 56 (9–10) , 764 – 770 (1999) . Crossref, Medline, CAS, Google Scholar42 Reed P , Veiga H , Jorge AM , Terrak M , Pinho MG . Monofunctional transglycosylases are not essential for Staphylococcus aureus cell wall synthesis . J. Bacteriol. 193 (10) , 2549 – 2556 (2011) . Crossref, Medline, CAS, Google Scholar43 Giannouli S , Labrou M , Kyritsis A et al. Detection of mutations in the FemXAB protein family in oxacillin-susceptible mecA-positive Staphylococcus aureus clinical isolates . J. Antimicrob. Chemother. 65 (4) , 626 – 633 (2010) . Crossref, Medline, CAS, Google Scholar44 Stranden AM , Roos M , Berger-Bachi B . Glutamine synthetase and heteroresistance in methicillin-resistant Staphylococcus aureus . Microb. Drug Resist. 2 (2) , 201 – 207 (1996) . Crossref, Medline, CAS, Google Scholar45 De Lencastre H , Wu SW , Pinho MG et al. Antibiotic resistance as a stress response: Complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin . Microb. Drug Resist. 5 (3) , 163 – 175 (1999) . Crossref, Medline, CAS, Google Scholar46 Huletsky A , Giroux R , Rossbach V et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci . J. Clin. Microbiol. 42 (5) , 1875 – 1884 (2004) . Crossref, Medline, CAS, Google Scholar47 Tanino T , Al-Dabbagh B , Mengin-Lecreulx D et al. Mechanistic analysis of muraymycin analogues: A guide to the design of MraY inhibitors . J. Med. Chem. 54 (24) , 8421 – 8439 (2011) . Crossref, Medline, CAS, Google Scholar48 Tan CM , Therien AG , Lu J et al. Restoring methicillin-resistant Staphylococcus aureus susceptibility to beta-lactam antibiotics . Sci. Transl. Med. 4 (126) , 126ra35 (2012) . Medline, Google Scholar49 Tamber S , Schwartzman J , Cheung AL . Role of PknB kinase in antibiotic resistance and virulence in community-acquired methicillin-resistant Staphylococcus aureus strain USA300 . Infect. Immun. 78 (8) , 3637 – 3646 (2010) . Crossref, Medline, CAS, Google Scholar50 Campbell J , Singh AK , Santa Maria JP Jr et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus . ACS Chem. Biol. 6 (1) , 106 – 116 (2011) . Crossref, Medline, CAS, Google Scholar51 Boyle-Vavra S , Yin S , Daum RS . The VraS/VraR two-component regulatory system required for oxacillin resistance in community-acquired methicillin-resistant Staphylococcus aureus . FEMS Microbiol. Lett. 262 (2) , 163 – 171 (2006) . Crossref, Medline, CAS, Google Scholar52 Overton IM , Graham S , Gould KA et al. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus . BMC Syst. Biol. 5 , 68 (2011) . Crossref, Medline, Google Scholar53 Wong H , Louie L , Lo RY , Simor AE . Characterization of Staphylococcus aureus isolates with a partial or complete absence of staphylococcal cassette chromosome elements . J. Clin. Microbiol. 48 (10) , 3525 – 3531 (2010) . Crossref, Medline, CAS, Google Scholar54 Bartels MD , Boye K , Rohde SM et al. A common variant of staphylococcal cassette chromosome mec type IVa in isolates from Copenhagen, Denmark, is not detected by the BD GeneOhm methicillin-resistant Staphylococcus aureus assay . J. Clin. Microbiol. 47 (5) , 1524 – 1527 (2009) . Crossref, Medline, Google Scholar55 Lindqvist M , Isaksson B , Grub C , Jonassen TO , Hallgren A . Detection and characterisation of SCCmec remnants in multiresistant methicillin-susceptible Staphylococcus aureus causing a clonal outbreak in a swedish county . Eur. J. Clin. Microbiol. Infect. Dis. 31 (2) , 141 – 147 (2012) . Crossref, Medline, CAS, Google Scholar56 Hombach M , Pfyffer GE , Roos M , Lucke K . Detection of methicillin-resistant Staphylococcus aureus (MRSA) in specimens from various body sites: Performance characteristics of the BD GeneOhm MRSA assay, the Xpert MRSA assay, and broth-enriched culture in an area with a low prevalence of MRSA infections . J. Clin. Microbiol. 48 (11) , 3882 – 3887 (2010) . Crossref, Medline, Google Scholar57 Blanc DS , Basset P , Nahimana-Tessemo I , Jaton K , Greub G , Zanetti G . High proportion of wrongly identified methicillin-resistant Staphylococcus aureus carriers by use of a rapid commercial PCR assay due to presence of staphylococcal cassette chromosome element lacking the mecA gene . J. Clin. Microbiol. 49 (2) , 722 – 724 (2011) . Crossref, Medline, Google Scholar58 Arbefeville SS , Zhang K , Kroeger JS , Howard WJ , Diekema DJ , Richter SS . Prevalence and genetic relatedness of methicillin-susceptible Staphylococcus aureus isolates detected by the Xpert MRSA nasal assay . J. Clin. Microbiol. 49 (8) , 2996 – 2999 (2011) . Crossref, Medline, Google Scholar59 Herdman MT , Wyncoll D , Halligan E , Cliff PR , French G , Edgeworth JD . Clinical application of real-time PCR to screening critically ill and emergency-care surgical patients for methicillin-resistant Staphylococcus aureus: A quantitative analytical study . J. Clin. Microbiol. 47 (12) , 4102 – 4108 (2009) . Crossref, Medline, Google Scholar60 Soderquist B , Neander M , Dienus O et al. Real-time multiplex PCR for direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in clinical samples enriched by broth culture . APMIS 120 (5) , 427 – 432 (2012) . Crossref, Medline, Google Scholar61 Shore AC , Rossney AS , O’Connell B et al. Detection of staphylococcal cassette chromosome mec-associated DNA segments in multiresistant methicillin-susceptible Staphylococcus aureus (MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both methicillin-resistant S. aureus and MSSA . Antimicrob. Agents Chemother. 52 (12) , 4407 – 4419 (2008) . Crossref, Medline, CAS, Google ScholarWebsites101 Becker K, Kahl B. Chapter 70: Staphylococci. In: APIC Text of Infection Control and Epidemiology. http://text.apic.org/item-74/chapter-70-staphylococci Google Scholar102 US FDA. SPECIAL 510(k): Device Modification ODE review memorandum, RE: K101879. www.accessdata.fda.gov/cdrh_docs/reviews/K101879.pdf Google ScholarFiguresReferencesRelatedDetails Clinical Insights: Staphylococcus aureus Antibiotic ResistanceMetrics Downloaded 17 times History Published online 9 July 2014 Published in print July 2014 Information© Future Medicine Ltd© Future Medicine LtdPDF download" @default.
- W2806913979 created "2018-06-13" @default.
- W2806913979 creator A5029639484 @default.
- W2806913979 creator A5086481621 @default.
- W2806913979 date "2014-07-01" @default.
- W2806913979 modified "2023-09-25" @default.
- W2806913979 title "Role of rapid diagnostics in selecting optimal therapy for Staphylococcus aureus infections" @default.
- W2806913979 cites W1503255577 @default.
- W2806913979 cites W1591645875 @default.
- W2806913979 cites W1969335793 @default.
- W2806913979 cites W1976667730 @default.
- W2806913979 cites W1977395095 @default.
- W2806913979 cites W1988813385 @default.
- W2806913979 cites W1991119493 @default.
- W2806913979 cites W1991557315 @default.
- W2806913979 cites W1993397663 @default.
- W2806913979 cites W2003580819 @default.
- W2806913979 cites W2004240111 @default.
- W2806913979 cites W2011376880 @default.
- W2806913979 cites W2013798053 @default.
- W2806913979 cites W2020918341 @default.
- W2806913979 cites W2023991823 @default.
- W2806913979 cites W2040731143 @default.
- W2806913979 cites W2043198594 @default.
- W2806913979 cites W2043213314 @default.
- W2806913979 cites W2043939693 @default.
- W2806913979 cites W2045190713 @default.
- W2806913979 cites W2050639129 @default.
- W2806913979 cites W2051464239 @default.
- W2806913979 cites W2053025096 @default.
- W2806913979 cites W2055953102 @default.
- W2806913979 cites W2061990600 @default.
- W2806913979 cites W2068012829 @default.
- W2806913979 cites W2073829378 @default.
- W2806913979 cites W2081464719 @default.
- W2806913979 cites W2096430409 @default.
- W2806913979 cites W2105489185 @default.
- W2806913979 cites W2108385979 @default.
- W2806913979 cites W2110928570 @default.
- W2806913979 cites W2114764103 @default.
- W2806913979 cites W2116754268 @default.
- W2806913979 cites W2117744797 @default.
- W2806913979 cites W2119092072 @default.
- W2806913979 cites W2119699028 @default.
- W2806913979 cites W2125066910 @default.
- W2806913979 cites W2127072506 @default.
- W2806913979 cites W2131395208 @default.
- W2806913979 cites W2132081769 @default.
- W2806913979 cites W2132909924 @default.
- W2806913979 cites W2141089376 @default.
- W2806913979 cites W2143491155 @default.
- W2806913979 cites W2143709116 @default.
- W2806913979 cites W2153539422 @default.
- W2806913979 cites W2154341703 @default.
- W2806913979 cites W2154491509 @default.
- W2806913979 cites W2156458756 @default.
- W2806913979 cites W2157590138 @default.
- W2806913979 cites W2157744708 @default.
- W2806913979 cites W2161738775 @default.
- W2806913979 cites W2167719973 @default.
- W2806913979 cites W2167908919 @default.
- W2806913979 cites W2314649741 @default.
- W2806913979 cites W4301626844 @default.
- W2806913979 cites W5383056 @default.
- W2806913979 doi "https://doi.org/10.2217/ebo.13.688" @default.
- W2806913979 hasPublicationYear "2014" @default.
- W2806913979 type Work @default.
- W2806913979 sameAs 2806913979 @default.
- W2806913979 citedByCount "0" @default.
- W2806913979 crossrefType "other" @default.
- W2806913979 hasAuthorship W2806913979A5029639484 @default.
- W2806913979 hasAuthorship W2806913979A5086481621 @default.
- W2806913979 hasConcept C2777334864 @default.
- W2806913979 hasConcept C2779489039 @default.
- W2806913979 hasConcept C523546767 @default.
- W2806913979 hasConcept C54355233 @default.
- W2806913979 hasConcept C71924100 @default.
- W2806913979 hasConcept C86803240 @default.
- W2806913979 hasConcept C89423630 @default.
- W2806913979 hasConceptScore W2806913979C2777334864 @default.
- W2806913979 hasConceptScore W2806913979C2779489039 @default.
- W2806913979 hasConceptScore W2806913979C523546767 @default.
- W2806913979 hasConceptScore W2806913979C54355233 @default.
- W2806913979 hasConceptScore W2806913979C71924100 @default.
- W2806913979 hasConceptScore W2806913979C86803240 @default.
- W2806913979 hasConceptScore W2806913979C89423630 @default.
- W2806913979 hasLocation W28069139791 @default.
- W2806913979 hasOpenAccess W2806913979 @default.
- W2806913979 hasPrimaryLocation W28069139791 @default.
- W2806913979 hasRelatedWork W1948008185 @default.
- W2806913979 hasRelatedWork W2013698003 @default.
- W2806913979 hasRelatedWork W2015198171 @default.
- W2806913979 hasRelatedWork W2025145758 @default.
- W2806913979 hasRelatedWork W2104829858 @default.
- W2806913979 hasRelatedWork W2147773763 @default.
- W2806913979 hasRelatedWork W2402509187 @default.
- W2806913979 hasRelatedWork W2554881899 @default.
- W2806913979 hasRelatedWork W2975636645 @default.