Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806961377> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2806961377 endingPage "15" @default.
- W2806961377 startingPage "7" @default.
- W2806961377 abstract "In the current business practice, recommender agents are widely used in e-commerce domain to actively recommend the right items to online users. Traditional Collaborative Filtering (CF) recommender systems are developed based on single ratings which are used to match similar users based on their past ratings. Although these types of recommender systems have been successfully implemented in healthcare context, however the use of multi-criteria CF for health product recommendation has been rarely explored. The aim of this paper is to propose a new recommendation method based on multi-criteria CF to enhance the predictive accuracy of recommender systems in healthcare domain using clustering, dimensionality reduction and prediction machine learning methods. To do so, we develop a knowledge-based system to predict the users’ overall assessment value of health products using Mamdani’s fuzzy inference technique. Accordingly, we used Classification and Regression Trees (CART) to discover the fuzzy rules to be used in the fuzzy rule-based technique. To improve the recommendation accuracy of proposed multi-criteria CF, we apply a clustering technique and ensembles of fuzzy rule-based prediction models. We also use a robust dimensionality reduction technique, Higher Order Singular Value Decomposition (HOSVD), to find the similar users and products in each cluster to solve the sparsity issue. We test the accuracy of recommendation method on two health products datasets with three criteria, Product Brand, Product Price and Product Quality, crawled from the online health products stores. Our experiments confirm that the proposed method can be a promising and effective intelligent system for healthcare products recommendation." @default.
- W2806961377 created "2018-06-13" @default.
- W2806961377 creator A5010293537 @default.
- W2806961377 creator A5026665183 @default.
- W2806961377 creator A5032191232 @default.
- W2806961377 creator A5040322863 @default.
- W2806961377 creator A5044012334 @default.
- W2806961377 creator A5055158726 @default.
- W2806961377 date "2018-05-05" @default.
- W2806961377 modified "2023-09-24" @default.
- W2806961377 title "A Recommendation Agent for Health Products Recommendation Using Dimensionality Reduction and Prediction Machine Learning Techniques" @default.
- W2806961377 hasPublicationYear "2018" @default.
- W2806961377 type Work @default.
- W2806961377 sameAs 2806961377 @default.
- W2806961377 citedByCount "0" @default.
- W2806961377 crossrefType "proceedings-article" @default.
- W2806961377 hasAuthorship W2806961377A5010293537 @default.
- W2806961377 hasAuthorship W2806961377A5026665183 @default.
- W2806961377 hasAuthorship W2806961377A5032191232 @default.
- W2806961377 hasAuthorship W2806961377A5040322863 @default.
- W2806961377 hasAuthorship W2806961377A5044012334 @default.
- W2806961377 hasAuthorship W2806961377A5055158726 @default.
- W2806961377 hasConcept C119857082 @default.
- W2806961377 hasConcept C124101348 @default.
- W2806961377 hasConcept C151730666 @default.
- W2806961377 hasConcept C154945302 @default.
- W2806961377 hasConcept C21569690 @default.
- W2806961377 hasConcept C2524010 @default.
- W2806961377 hasConcept C2779343474 @default.
- W2806961377 hasConcept C33923547 @default.
- W2806961377 hasConcept C41008148 @default.
- W2806961377 hasConcept C557471498 @default.
- W2806961377 hasConcept C58166 @default.
- W2806961377 hasConcept C70518039 @default.
- W2806961377 hasConcept C73555534 @default.
- W2806961377 hasConcept C86803240 @default.
- W2806961377 hasConcept C90673727 @default.
- W2806961377 hasConceptScore W2806961377C119857082 @default.
- W2806961377 hasConceptScore W2806961377C124101348 @default.
- W2806961377 hasConceptScore W2806961377C151730666 @default.
- W2806961377 hasConceptScore W2806961377C154945302 @default.
- W2806961377 hasConceptScore W2806961377C21569690 @default.
- W2806961377 hasConceptScore W2806961377C2524010 @default.
- W2806961377 hasConceptScore W2806961377C2779343474 @default.
- W2806961377 hasConceptScore W2806961377C33923547 @default.
- W2806961377 hasConceptScore W2806961377C41008148 @default.
- W2806961377 hasConceptScore W2806961377C557471498 @default.
- W2806961377 hasConceptScore W2806961377C58166 @default.
- W2806961377 hasConceptScore W2806961377C70518039 @default.
- W2806961377 hasConceptScore W2806961377C73555534 @default.
- W2806961377 hasConceptScore W2806961377C86803240 @default.
- W2806961377 hasConceptScore W2806961377C90673727 @default.
- W2806961377 hasIssue "3" @default.
- W2806961377 hasLocation W28069613771 @default.
- W2806961377 hasOpenAccess W2806961377 @default.
- W2806961377 hasPrimaryLocation W28069613771 @default.
- W2806961377 hasRelatedWork W1942084513 @default.
- W2806961377 hasRelatedWork W1977375094 @default.
- W2806961377 hasRelatedWork W2021458370 @default.
- W2806961377 hasRelatedWork W2085034397 @default.
- W2806961377 hasRelatedWork W2376939534 @default.
- W2806961377 hasRelatedWork W2564181080 @default.
- W2806961377 hasRelatedWork W2580732757 @default.
- W2806961377 hasRelatedWork W2588117954 @default.
- W2806961377 hasRelatedWork W2618416470 @default.
- W2806961377 hasRelatedWork W2770640503 @default.
- W2806961377 hasRelatedWork W2780148600 @default.
- W2806961377 hasRelatedWork W27807072 @default.
- W2806961377 hasRelatedWork W2799579227 @default.
- W2806961377 hasRelatedWork W2900722154 @default.
- W2806961377 hasRelatedWork W2901470288 @default.
- W2806961377 hasRelatedWork W2947181730 @default.
- W2806961377 hasRelatedWork W3027483397 @default.
- W2806961377 hasRelatedWork W3033735428 @default.
- W2806961377 hasRelatedWork W3093506265 @default.
- W2806961377 hasRelatedWork W75565305 @default.
- W2806961377 hasVolume "5" @default.
- W2806961377 isParatext "false" @default.
- W2806961377 isRetracted "false" @default.
- W2806961377 magId "2806961377" @default.
- W2806961377 workType "article" @default.