Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806979281> ?p ?o ?g. }
- W2806979281 abstract "Abstract NGS is a revolutionising diagnosis and treatment of rare diseases. However, its relatively modest application in common diseases is limited by analytical approaches. Instead of variant-level approaches, typical for rare disease or large cohort analyses, contemporary investigation of common polygenic disorders requires the development of tools combining mutational burden and biological impact of a personalised set of mutations into single gene scores. GenePy ( https://github.com/UoS-HGIG/GenePy ) is a gene score for transforming sequencing data capable of estimating whole-gene pathogenicity on a per-patient basis. GenePy implements known deleteriousness metrics, incorporates allele frequency and individual zygosity information. Individuals harbouring multiple rare highly deleterious mutations accumulate extreme gene scores while the majority of genes usually achieve very low scores. Following correction for gene length, GenePy intuitively prioritises genes within individuals and affords gene/pathway score comparison between groups of individuals. Herein, we generate GenePy scores from whole-exome sequencing data for ∼15,000 genes across a cohort of 508 individuals. We describe score attributes and model behaviour under various biological conditions. We demonstrate proof of concept that GenePy sensitively identifies known causal genes by calculating GenePy scores for NOD2 (an established causal Crohn’s Disease gene), in a modest cohort of patients for comparison against controls. This test of GenePy using a positive control gene demonstrates markedly more significant results (p=1.37 × 10 -4 ) compared to the most commonly applied tool for combining common and rare variation. In addition to increasing the biological information content for each variant, the per gene-per individual nature of GenePy transforms the utility of sequencing data. GenePy scores are intuitive when assessing for individual patients or for comparing between groups. Because GenePy intrinsically reflects pathogenicity at the gene level, this specifically facilitates downstream data integration (e.g. into machine learning, network and topological analyses) with transcriptomic and proteomic data that also report at the gene level. Author Summary Rapid technological advances have made DNA sequencing an effective, economic tool for detecting genomic variation. Detecting rare variation at the individual level is proving very successful in identifying the genetic causes of disease when just single mutations are sufficient to manifest disease. However, interpreting genomic data is much less straightforward for common diseases such as asthma, arthritis or heart disease where many genetic changes across multiple genes combine with the environment to bring about disease symptoms. We have developed a new scoring system called GenePy that generates whole gene pathogenicity scores for indiviual patients. The score corrects for the length of the gene and is intuitive to use. Unlike many mutation deleteriousness metrics, GenePy also takes into account the population frequency of the variant and the number of copies of any given mutation and combines data for as many variants as are present in a given gene for any one individual. In this paper we apply the GenePy scoring system to a cohort of over 500 individuals for whom we have sequencing data across all genomics regions that code for protein. We descibe how GenePy performs and demonstrate superior sensitivity to detect known causal genes in a common autoimmune condition." @default.
- W2806979281 created "2018-06-13" @default.
- W2806979281 creator A5002940859 @default.
- W2806979281 creator A5016013607 @default.
- W2806979281 creator A5018216064 @default.
- W2806979281 creator A5019096765 @default.
- W2806979281 creator A5034757003 @default.
- W2806979281 creator A5063395028 @default.
- W2806979281 date "2018-06-01" @default.
- W2806979281 modified "2023-09-24" @default.
- W2806979281 title "GenePy – a score for estimating gene pathogenicity in individuals using next-generation sequencing data" @default.
- W2806979281 cites W1591228931 @default.
- W2806979281 cites W1642457845 @default.
- W2806979281 cites W1826234378 @default.
- W2806979281 cites W1925054293 @default.
- W2806979281 cites W1965691313 @default.
- W2806979281 cites W1970413157 @default.
- W2806979281 cites W1977109152 @default.
- W2806979281 cites W2011582941 @default.
- W2806979281 cites W2020427316 @default.
- W2806979281 cites W2058148991 @default.
- W2806979281 cites W2059145105 @default.
- W2806979281 cites W2086632167 @default.
- W2806979281 cites W2089335658 @default.
- W2806979281 cites W2096791516 @default.
- W2806979281 cites W2099328768 @default.
- W2806979281 cites W2099383449 @default.
- W2806979281 cites W2102619694 @default.
- W2806979281 cites W2114029728 @default.
- W2806979281 cites W2119180969 @default.
- W2806979281 cites W2129504003 @default.
- W2806979281 cites W2129952088 @default.
- W2806979281 cites W2137886330 @default.
- W2806979281 cites W2145187337 @default.
- W2806979281 cites W2145191876 @default.
- W2806979281 cites W2148105023 @default.
- W2806979281 cites W2159998163 @default.
- W2806979281 cites W2160011929 @default.
- W2806979281 cites W2160995259 @default.
- W2806979281 cites W2161978970 @default.
- W2806979281 cites W2167638767 @default.
- W2806979281 cites W2167852161 @default.
- W2806979281 cites W2168133698 @default.
- W2806979281 cites W2206432113 @default.
- W2806979281 cites W2256016639 @default.
- W2806979281 cites W2416319244 @default.
- W2806979281 cites W2535426958 @default.
- W2806979281 cites W2539184829 @default.
- W2806979281 cites W2556048034 @default.
- W2806979281 cites W2571503386 @default.
- W2806979281 cites W2582191126 @default.
- W2806979281 cites W2586994065 @default.
- W2806979281 cites W2614662869 @default.
- W2806979281 cites W2615924345 @default.
- W2806979281 cites W2753554758 @default.
- W2806979281 cites W2756477150 @default.
- W2806979281 cites W2767122052 @default.
- W2806979281 cites W2767157762 @default.
- W2806979281 cites W2782297377 @default.
- W2806979281 cites W4210347168 @default.
- W2806979281 doi "https://doi.org/10.1101/336701" @default.
- W2806979281 hasPublicationYear "2018" @default.
- W2806979281 type Work @default.
- W2806979281 sameAs 2806979281 @default.
- W2806979281 citedByCount "2" @default.
- W2806979281 countsByYear W28069792812019 @default.
- W2806979281 crossrefType "posted-content" @default.
- W2806979281 hasAuthorship W2806979281A5002940859 @default.
- W2806979281 hasAuthorship W2806979281A5016013607 @default.
- W2806979281 hasAuthorship W2806979281A5018216064 @default.
- W2806979281 hasAuthorship W2806979281A5019096765 @default.
- W2806979281 hasAuthorship W2806979281A5034757003 @default.
- W2806979281 hasAuthorship W2806979281A5063395028 @default.
- W2806979281 hasBestOaLocation W28069792811 @default.
- W2806979281 hasConcept C104317684 @default.
- W2806979281 hasConcept C10590036 @default.
- W2806979281 hasConcept C126322002 @default.
- W2806979281 hasConcept C16671776 @default.
- W2806979281 hasConcept C180754005 @default.
- W2806979281 hasConcept C37463918 @default.
- W2806979281 hasConcept C501734568 @default.
- W2806979281 hasConcept C54355233 @default.
- W2806979281 hasConcept C60644358 @default.
- W2806979281 hasConcept C70721500 @default.
- W2806979281 hasConcept C71924100 @default.
- W2806979281 hasConcept C72563966 @default.
- W2806979281 hasConcept C86803240 @default.
- W2806979281 hasConceptScore W2806979281C104317684 @default.
- W2806979281 hasConceptScore W2806979281C10590036 @default.
- W2806979281 hasConceptScore W2806979281C126322002 @default.
- W2806979281 hasConceptScore W2806979281C16671776 @default.
- W2806979281 hasConceptScore W2806979281C180754005 @default.
- W2806979281 hasConceptScore W2806979281C37463918 @default.
- W2806979281 hasConceptScore W2806979281C501734568 @default.
- W2806979281 hasConceptScore W2806979281C54355233 @default.
- W2806979281 hasConceptScore W2806979281C60644358 @default.
- W2806979281 hasConceptScore W2806979281C70721500 @default.
- W2806979281 hasConceptScore W2806979281C71924100 @default.
- W2806979281 hasConceptScore W2806979281C72563966 @default.
- W2806979281 hasConceptScore W2806979281C86803240 @default.