Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807002246> ?p ?o ?g. }
- W2807002246 endingPage "676" @default.
- W2807002246 startingPage "667" @default.
- W2807002246 abstract "Discovery of rapidly turning-over photosynthetic complex protein subunits has revealed potential photodamage targets and highlighted new points of control to maintain photosystem homeostasis under optimal and stress conditions. ZEP, PGRL1, and NDH complex-dependent cyclic electron flow can act as photoprotection pathways in response to light stresses. Photosynthetic protein phosphorylation in state transition may act in protein stability control. Rapid protein synthesis and degradation pathway in different cellular compartments could combine to ensure photoprotection in plants. Rapid protein degradation and replacement is an important response to photodamage and a means of photoprotection by recovering proteostasis. Protein turnover and translation efficiency studies have discovered fast turnover subunits in cytochrome b6f and the NAD(P)H dehydrogenase (NDH) complex, in addition to PSII subunit D1. Mutations of these complexes have been linked to enhanced photodamage at least partially via cyclic electron flow. Photodamage and photoprotection involving cytochrome b6f, NDH complex, cyclic electron flow, PSI, and nonphotochemical quenching proteins have been reported. Here, we propose that the rapid turnover of specific proteins in cytochrome b6f and the NDH complex need to be characterised and compared with the inhibition of PSII by excess excitation energy and PSI by excess electron flux to expand our understanding of photoinhibition mechanisms. Rapid protein degradation and replacement is an important response to photodamage and a means of photoprotection by recovering proteostasis. Protein turnover and translation efficiency studies have discovered fast turnover subunits in cytochrome b6f and the NAD(P)H dehydrogenase (NDH) complex, in addition to PSII subunit D1. Mutations of these complexes have been linked to enhanced photodamage at least partially via cyclic electron flow. Photodamage and photoprotection involving cytochrome b6f, NDH complex, cyclic electron flow, PSI, and nonphotochemical quenching proteins have been reported. Here, we propose that the rapid turnover of specific proteins in cytochrome b6f and the NDH complex need to be characterised and compared with the inhibition of PSII by excess excitation energy and PSI by excess electron flux to expand our understanding of photoinhibition mechanisms. used here to describe modifications to protein properties that contribute to the decrease in photosynthesis efficiency through the actions of light. High irradiance, fluctuating light, and short wavelength light can each cause different levels or types of damage to photosynthetic proteins, leading to a reduction in photosynthesis efficiency. Plants are equipped with different photoprotection mechanisms to limit photodamage and overcome its effects on photosynthetic rate. the combination of degradation and synthesis of specific proteins that maintains the steady-state abundance of each protein in a cell. It maintains protein quality and function throughout different stages of growth and development. It is a high energy cost to cells, representing at least 25% of all cellular ATP use." @default.
- W2807002246 created "2018-06-13" @default.
- W2807002246 creator A5004433673 @default.
- W2807002246 creator A5040405176 @default.
- W2807002246 creator A5075889094 @default.
- W2807002246 date "2018-08-01" @default.
- W2807002246 modified "2023-10-11" @default.
- W2807002246 title "Mechanisms of Photodamage and Protein Turnover in Photoinhibition" @default.
- W2807002246 cites W1584269659 @default.
- W2807002246 cites W1660011402 @default.
- W2807002246 cites W184047573 @default.
- W2807002246 cites W1877148761 @default.
- W2807002246 cites W1891455039 @default.
- W2807002246 cites W1921909110 @default.
- W2807002246 cites W1972564399 @default.
- W2807002246 cites W1977868352 @default.
- W2807002246 cites W1987127397 @default.
- W2807002246 cites W1989046619 @default.
- W2807002246 cites W2006445301 @default.
- W2807002246 cites W2015227064 @default.
- W2807002246 cites W2021301352 @default.
- W2807002246 cites W2025571335 @default.
- W2807002246 cites W2025904332 @default.
- W2807002246 cites W2026033633 @default.
- W2807002246 cites W2030748506 @default.
- W2807002246 cites W2034293882 @default.
- W2807002246 cites W2034793491 @default.
- W2807002246 cites W2036066742 @default.
- W2807002246 cites W2039262635 @default.
- W2807002246 cites W2042549477 @default.
- W2807002246 cites W2065717544 @default.
- W2807002246 cites W2080874913 @default.
- W2807002246 cites W2084478536 @default.
- W2807002246 cites W2089415472 @default.
- W2807002246 cites W2091635488 @default.
- W2807002246 cites W2093861840 @default.
- W2807002246 cites W2094560494 @default.
- W2807002246 cites W2102889590 @default.
- W2807002246 cites W2106937504 @default.
- W2807002246 cites W2107627065 @default.
- W2807002246 cites W2113270528 @default.
- W2807002246 cites W2117364310 @default.
- W2807002246 cites W2133099256 @default.
- W2807002246 cites W2134756408 @default.
- W2807002246 cites W2135415380 @default.
- W2807002246 cites W2136868446 @default.
- W2807002246 cites W2138043892 @default.
- W2807002246 cites W2140403358 @default.
- W2807002246 cites W2151574233 @default.
- W2807002246 cites W2162112668 @default.
- W2807002246 cites W2167480041 @default.
- W2807002246 cites W2171984357 @default.
- W2807002246 cites W2197632299 @default.
- W2807002246 cites W2277094711 @default.
- W2807002246 cites W2288799968 @default.
- W2807002246 cites W2316518443 @default.
- W2807002246 cites W2332497573 @default.
- W2807002246 cites W2334501944 @default.
- W2807002246 cites W2342873991 @default.
- W2807002246 cites W2412604357 @default.
- W2807002246 cites W2460775516 @default.
- W2807002246 cites W2467573563 @default.
- W2807002246 cites W2508346711 @default.
- W2807002246 cites W2529415687 @default.
- W2807002246 cites W2531605588 @default.
- W2807002246 cites W2555544367 @default.
- W2807002246 cites W2580107677 @default.
- W2807002246 cites W2582331638 @default.
- W2807002246 cites W2595121942 @default.
- W2807002246 cites W2603022224 @default.
- W2807002246 cites W2617047976 @default.
- W2807002246 cites W2745422559 @default.
- W2807002246 cites W2750430945 @default.
- W2807002246 cites W2761323078 @default.
- W2807002246 cites W2766384775 @default.
- W2807002246 cites W2773039976 @default.
- W2807002246 cites W2784976431 @default.
- W2807002246 cites W2788590786 @default.
- W2807002246 cites W2795215807 @default.
- W2807002246 doi "https://doi.org/10.1016/j.tplants.2018.05.004" @default.
- W2807002246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29887276" @default.
- W2807002246 hasPublicationYear "2018" @default.
- W2807002246 type Work @default.
- W2807002246 sameAs 2807002246 @default.
- W2807002246 citedByCount "148" @default.
- W2807002246 countsByYear W28070022462018 @default.
- W2807002246 countsByYear W28070022462019 @default.
- W2807002246 countsByYear W28070022462020 @default.
- W2807002246 countsByYear W28070022462021 @default.
- W2807002246 countsByYear W28070022462022 @default.
- W2807002246 countsByYear W28070022462023 @default.
- W2807002246 crossrefType "journal-article" @default.
- W2807002246 hasAuthorship W2807002246A5004433673 @default.
- W2807002246 hasAuthorship W2807002246A5040405176 @default.
- W2807002246 hasAuthorship W2807002246A5075889094 @default.
- W2807002246 hasBestOaLocation W28070022462 @default.
- W2807002246 hasConcept C101692577 @default.
- W2807002246 hasConcept C104292427 @default.