Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807007250> ?p ?o ?g. }
- W2807007250 endingPage "84" @default.
- W2807007250 startingPage "71" @default.
- W2807007250 abstract "To solve problems with a Sugeno adaptive fuzzy neural network using training data, it is necessary to select the appropriate combination of input characteristics of the sub-adaptive neuro-fuzzy inference system (ANFIS) and to determine the appropriate topology. The multi-layer architecture of a sub-ANFIS (MLA-ANFIS) is a good model for prediction problems and solves them modularity. Since, the combination of several predictors is the current focus in the construction of hybrid intelligent systems; we created many solutions to combine machine learning methods, namely ANFIS, support vector machine (SVM), deep neural network (DNN), naive Bayes (NB), linear regression (LR), extreme learning machine (ELM), and decision tree (DT) mixed predictors, and ensemble bootstrap aggregation based on MLA-ANFIS in order to discover the optimal model of combined predictors based on the MLA-ANFIS with a combination of input features entered in the MLA-ANFIS. We implemented our approaches on 365-day concrete compressive strength, thoracic surgery, fertility diagnosis, breast, energy, and glass identification datasets from UCI. The experimental results prove that the combining predictors for the MLA-ANFIS show performance improvements compared to the pure MLA-ANFIS method." @default.
- W2807007250 created "2018-06-13" @default.
- W2807007250 creator A5071442688 @default.
- W2807007250 date "2019-01-01" @default.
- W2807007250 modified "2023-10-16" @default.
- W2807007250 title "Combining predictors for multi-layer architecture of adaptive fuzzy inference system" @default.
- W2807007250 cites W1411285485 @default.
- W2807007250 cites W1924689489 @default.
- W2807007250 cites W1969885422 @default.
- W2807007250 cites W1972805005 @default.
- W2807007250 cites W1984903091 @default.
- W2807007250 cites W1994830145 @default.
- W2807007250 cites W1995833382 @default.
- W2807007250 cites W1995995344 @default.
- W2807007250 cites W2005829528 @default.
- W2807007250 cites W2021970732 @default.
- W2807007250 cites W2028628242 @default.
- W2807007250 cites W2030473669 @default.
- W2807007250 cites W2032477387 @default.
- W2807007250 cites W2038705219 @default.
- W2807007250 cites W2051381803 @default.
- W2807007250 cites W2053029684 @default.
- W2807007250 cites W2055033472 @default.
- W2807007250 cites W2061933243 @default.
- W2807007250 cites W2064682403 @default.
- W2807007250 cites W2069746097 @default.
- W2807007250 cites W2070674634 @default.
- W2807007250 cites W2072613728 @default.
- W2807007250 cites W2074553104 @default.
- W2807007250 cites W2079589085 @default.
- W2807007250 cites W2088422930 @default.
- W2807007250 cites W2090123586 @default.
- W2807007250 cites W2091469633 @default.
- W2807007250 cites W2096987757 @default.
- W2807007250 cites W2105437322 @default.
- W2807007250 cites W2107074288 @default.
- W2807007250 cites W2111072639 @default.
- W2807007250 cites W2113224918 @default.
- W2807007250 cites W2137983211 @default.
- W2807007250 cites W2140196823 @default.
- W2807007250 cites W2158766056 @default.
- W2807007250 cites W2554780437 @default.
- W2807007250 cites W2558530880 @default.
- W2807007250 cites W28412257 @default.
- W2807007250 cites W4212883601 @default.
- W2807007250 cites W4231109964 @default.
- W2807007250 cites W4232920930 @default.
- W2807007250 cites W4248437541 @default.
- W2807007250 cites W843551813 @default.
- W2807007250 cites W2109689252 @default.
- W2807007250 cites W2570371883 @default.
- W2807007250 doi "https://doi.org/10.1016/j.cogsys.2018.05.005" @default.
- W2807007250 hasPublicationYear "2019" @default.
- W2807007250 type Work @default.
- W2807007250 sameAs 2807007250 @default.
- W2807007250 citedByCount "5" @default.
- W2807007250 countsByYear W28070072502019 @default.
- W2807007250 countsByYear W28070072502021 @default.
- W2807007250 countsByYear W28070072502023 @default.
- W2807007250 crossrefType "journal-article" @default.
- W2807007250 hasAuthorship W2807007250A5071442688 @default.
- W2807007250 hasConcept C119857082 @default.
- W2807007250 hasConcept C12267149 @default.
- W2807007250 hasConcept C124101348 @default.
- W2807007250 hasConcept C154945302 @default.
- W2807007250 hasConcept C186108316 @default.
- W2807007250 hasConcept C195975749 @default.
- W2807007250 hasConcept C29470771 @default.
- W2807007250 hasConcept C41008148 @default.
- W2807007250 hasConcept C50644808 @default.
- W2807007250 hasConcept C58166 @default.
- W2807007250 hasConcept C84525736 @default.
- W2807007250 hasConceptScore W2807007250C119857082 @default.
- W2807007250 hasConceptScore W2807007250C12267149 @default.
- W2807007250 hasConceptScore W2807007250C124101348 @default.
- W2807007250 hasConceptScore W2807007250C154945302 @default.
- W2807007250 hasConceptScore W2807007250C186108316 @default.
- W2807007250 hasConceptScore W2807007250C195975749 @default.
- W2807007250 hasConceptScore W2807007250C29470771 @default.
- W2807007250 hasConceptScore W2807007250C41008148 @default.
- W2807007250 hasConceptScore W2807007250C50644808 @default.
- W2807007250 hasConceptScore W2807007250C58166 @default.
- W2807007250 hasConceptScore W2807007250C84525736 @default.
- W2807007250 hasFunder F4320322464 @default.
- W2807007250 hasLocation W28070072501 @default.
- W2807007250 hasOpenAccess W2807007250 @default.
- W2807007250 hasPrimaryLocation W28070072501 @default.
- W2807007250 hasRelatedWork W1470425429 @default.
- W2807007250 hasRelatedWork W1996541855 @default.
- W2807007250 hasRelatedWork W2503963865 @default.
- W2807007250 hasRelatedWork W3186233728 @default.
- W2807007250 hasRelatedWork W3195168932 @default.
- W2807007250 hasRelatedWork W3210918776 @default.
- W2807007250 hasRelatedWork W4224946860 @default.
- W2807007250 hasRelatedWork W4310906510 @default.
- W2807007250 hasRelatedWork W4318350883 @default.
- W2807007250 hasRelatedWork W4321636153 @default.
- W2807007250 hasVolume "53" @default.