Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807010618> ?p ?o ?g. }
- W2807010618 abstract "Abstract High‐performance ligand‐based virtual screening (VS) models have been developed using various computational methods, including the deep neural network (DNN) method. There are high expectations for exploration of the advanced capabilities of DNN to improve VS performance, and this capability has been optimally achieved using large data training datasets. However, their ability to screen large compound libraries has not been evaluated. There is a need for developing and evaluating ligand‐based large data DNN VS models for large compound libraries. In this study, we developed ligand‐based large data DNN VS models for inhibitors of six anticancer targets using 0.5 M training compounds. The developed VS models were evaluated by 10‐fold cross‐validation, achieving 77.9‐97.8 % sensitivity, 99.9‐100 % specificity, 0.82‐0.98 Matthews correlation coefficient and 0.98‐0.99 area under the curve, outperforming random forest models. Moreover, DNN VS models developed by pre‐2015 inhibitors identified 50 % of post‐2015 inhibitors with a 0.01‐0.09 % false positive rate in screening 89 M PubChem compounds, also outperforming previous models. Experimental assays of the selected virtual hits of the EGFR inhibitor model led to reasonable novel structures of EGFR inhibitors. Our results confirmed the usefulness of the large data DNN model as a ligand‐based VS tool to screen large compound libraries." @default.
- W2807010618 created "2018-06-13" @default.
- W2807010618 creator A5000729469 @default.
- W2807010618 creator A5047860383 @default.
- W2807010618 creator A5058689861 @default.
- W2807010618 creator A5077700312 @default.
- W2807010618 date "2018-06-08" @default.
- W2807010618 modified "2023-10-01" @default.
- W2807010618 title "Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries" @default.
- W2807010618 cites W1673784558 @default.
- W2807010618 cites W1965617737 @default.
- W2807010618 cites W1968506227 @default.
- W2807010618 cites W1969001441 @default.
- W2807010618 cites W1975448236 @default.
- W2807010618 cites W1975875968 @default.
- W2807010618 cites W1978253274 @default.
- W2807010618 cites W1986417360 @default.
- W2807010618 cites W1988037271 @default.
- W2807010618 cites W1988195734 @default.
- W2807010618 cites W1988534836 @default.
- W2807010618 cites W1996464625 @default.
- W2807010618 cites W1996945686 @default.
- W2807010618 cites W1999798000 @default.
- W2807010618 cites W2001609426 @default.
- W2807010618 cites W2016979469 @default.
- W2807010618 cites W2017640164 @default.
- W2807010618 cites W2021748110 @default.
- W2807010618 cites W2027283431 @default.
- W2807010618 cites W2031372687 @default.
- W2807010618 cites W2039774147 @default.
- W2807010618 cites W2046589863 @default.
- W2807010618 cites W2052943632 @default.
- W2807010618 cites W2054198001 @default.
- W2807010618 cites W2071200203 @default.
- W2807010618 cites W2073081213 @default.
- W2807010618 cites W2076462394 @default.
- W2807010618 cites W2078240823 @default.
- W2807010618 cites W2080922998 @default.
- W2807010618 cites W2082577020 @default.
- W2807010618 cites W2083739814 @default.
- W2807010618 cites W2086442285 @default.
- W2807010618 cites W2096729078 @default.
- W2807010618 cites W2116296021 @default.
- W2807010618 cites W2117130368 @default.
- W2807010618 cites W2130972451 @default.
- W2807010618 cites W2136922672 @default.
- W2807010618 cites W2143612262 @default.
- W2807010618 cites W2147768505 @default.
- W2807010618 cites W2155893237 @default.
- W2807010618 cites W2158698691 @default.
- W2807010618 cites W2160815625 @default.
- W2807010618 cites W2165843192 @default.
- W2807010618 cites W2176625501 @default.
- W2807010618 cites W2177317049 @default.
- W2807010618 cites W2177508090 @default.
- W2807010618 cites W2197388599 @default.
- W2807010618 cites W2206840988 @default.
- W2807010618 cites W2234529989 @default.
- W2807010618 cites W2289178276 @default.
- W2807010618 cites W2397757171 @default.
- W2807010618 cites W2540540415 @default.
- W2807010618 cites W2565882918 @default.
- W2807010618 cites W2919115771 @default.
- W2807010618 doi "https://doi.org/10.1002/minf.201800031" @default.
- W2807010618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29882343" @default.
- W2807010618 hasPublicationYear "2018" @default.
- W2807010618 type Work @default.
- W2807010618 sameAs 2807010618 @default.
- W2807010618 citedByCount "14" @default.
- W2807010618 countsByYear W28070106182018 @default.
- W2807010618 countsByYear W28070106182019 @default.
- W2807010618 countsByYear W28070106182020 @default.
- W2807010618 countsByYear W28070106182021 @default.
- W2807010618 countsByYear W28070106182023 @default.
- W2807010618 crossrefType "journal-article" @default.
- W2807010618 hasAuthorship W2807010618A5000729469 @default.
- W2807010618 hasAuthorship W2807010618A5047860383 @default.
- W2807010618 hasAuthorship W2807010618A5058689861 @default.
- W2807010618 hasAuthorship W2807010618A5077700312 @default.
- W2807010618 hasConcept C103697762 @default.
- W2807010618 hasConcept C116569031 @default.
- W2807010618 hasConcept C119857082 @default.
- W2807010618 hasConcept C12267149 @default.
- W2807010618 hasConcept C124101348 @default.
- W2807010618 hasConcept C154945302 @default.
- W2807010618 hasConcept C158180186 @default.
- W2807010618 hasConcept C164085508 @default.
- W2807010618 hasConcept C169258074 @default.
- W2807010618 hasConcept C170493617 @default.
- W2807010618 hasConcept C185592680 @default.
- W2807010618 hasConcept C41008148 @default.
- W2807010618 hasConcept C50644808 @default.
- W2807010618 hasConcept C55493867 @default.
- W2807010618 hasConcept C60644358 @default.
- W2807010618 hasConcept C68762167 @default.
- W2807010618 hasConcept C70721500 @default.
- W2807010618 hasConcept C74187038 @default.
- W2807010618 hasConcept C86803240 @default.
- W2807010618 hasConceptScore W2807010618C103697762 @default.
- W2807010618 hasConceptScore W2807010618C116569031 @default.