Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807041517> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2807041517 endingPage "1498" @default.
- W2807041517 startingPage "1498" @default.
- W2807041517 abstract "Reasonable and effective power planning contributes a lot to energy efficiency improvement, as well as the formulation of future economic and energy policies for a region. Since only a few provinces in China have nuclear power plants so far, nuclear power plants were not considered in many provincial-level power planning models. As an extremely important source of power generation in the future, the role of nuclear power plants can never be overlooked. In this paper, a comprehensive and detailed optimization model of provincial-level power generation expansion considering biomass and nuclear power plants is established from the perspective of electricity demand uncertainty. This model has been successfully applied to the case study of Zhejiang Province. The findings suggest that the nuclear power plants will contribute 9.56% of the total installed capacity, and it will become the second stable electricity source. The lowest total discounted cost is 1033.28 billion RMB and the fuel cost accounts for a large part of the total cost (about 69%). Different key performance indicators (KPI) differentiate electricity demand in scenarios that are used to test the model. Low electricity demand in the development mode of the comprehensive adjustment scenario (COML) produces the optimal power development path, as it provides the lowest discounted cost." @default.
- W2807041517 created "2018-06-13" @default.
- W2807041517 creator A5005502123 @default.
- W2807041517 creator A5023354852 @default.
- W2807041517 creator A5024804431 @default.
- W2807041517 creator A5049078993 @default.
- W2807041517 creator A5086866094 @default.
- W2807041517 date "2018-06-08" @default.
- W2807041517 modified "2023-10-16" @default.
- W2807041517 title "Power Generation Expansion Optimization Model Considering Multi-Scenario Electricity Demand Constraints: A Case Study of Zhejiang Province, China" @default.
- W2807041517 cites W1963869023 @default.
- W2807041517 cites W1991024521 @default.
- W2807041517 cites W2025295951 @default.
- W2807041517 cites W2035489214 @default.
- W2807041517 cites W2104995535 @default.
- W2807041517 cites W2215654162 @default.
- W2807041517 cites W2277907931 @default.
- W2807041517 cites W2441873398 @default.
- W2807041517 cites W2529617256 @default.
- W2807041517 cites W2591494569 @default.
- W2807041517 cites W2730601384 @default.
- W2807041517 cites W2753350421 @default.
- W2807041517 cites W2769330162 @default.
- W2807041517 cites W2790241699 @default.
- W2807041517 cites W2790847912 @default.
- W2807041517 doi "https://doi.org/10.3390/en11061498" @default.
- W2807041517 hasPublicationYear "2018" @default.
- W2807041517 type Work @default.
- W2807041517 sameAs 2807041517 @default.
- W2807041517 citedByCount "11" @default.
- W2807041517 countsByYear W28070415172018 @default.
- W2807041517 countsByYear W28070415172019 @default.
- W2807041517 countsByYear W28070415172020 @default.
- W2807041517 countsByYear W28070415172021 @default.
- W2807041517 countsByYear W28070415172022 @default.
- W2807041517 countsByYear W28070415172023 @default.
- W2807041517 crossrefType "journal-article" @default.
- W2807041517 hasAuthorship W2807041517A5005502123 @default.
- W2807041517 hasAuthorship W2807041517A5023354852 @default.
- W2807041517 hasAuthorship W2807041517A5024804431 @default.
- W2807041517 hasAuthorship W2807041517A5049078993 @default.
- W2807041517 hasAuthorship W2807041517A5086866094 @default.
- W2807041517 hasBestOaLocation W28070415171 @default.
- W2807041517 hasConcept C119599485 @default.
- W2807041517 hasConcept C121332964 @default.
- W2807041517 hasConcept C127413603 @default.
- W2807041517 hasConcept C134560507 @default.
- W2807041517 hasConcept C162324750 @default.
- W2807041517 hasConcept C163258240 @default.
- W2807041517 hasConcept C18903297 @default.
- W2807041517 hasConcept C206658404 @default.
- W2807041517 hasConcept C423512 @default.
- W2807041517 hasConcept C513653683 @default.
- W2807041517 hasConcept C62520636 @default.
- W2807041517 hasConcept C86803240 @default.
- W2807041517 hasConceptScore W2807041517C119599485 @default.
- W2807041517 hasConceptScore W2807041517C121332964 @default.
- W2807041517 hasConceptScore W2807041517C127413603 @default.
- W2807041517 hasConceptScore W2807041517C134560507 @default.
- W2807041517 hasConceptScore W2807041517C162324750 @default.
- W2807041517 hasConceptScore W2807041517C163258240 @default.
- W2807041517 hasConceptScore W2807041517C18903297 @default.
- W2807041517 hasConceptScore W2807041517C206658404 @default.
- W2807041517 hasConceptScore W2807041517C423512 @default.
- W2807041517 hasConceptScore W2807041517C513653683 @default.
- W2807041517 hasConceptScore W2807041517C62520636 @default.
- W2807041517 hasConceptScore W2807041517C86803240 @default.
- W2807041517 hasFunder F4320336213 @default.
- W2807041517 hasIssue "6" @default.
- W2807041517 hasLocation W28070415171 @default.
- W2807041517 hasLocation W28070415172 @default.
- W2807041517 hasLocation W28070415173 @default.
- W2807041517 hasLocation W28070415174 @default.
- W2807041517 hasOpenAccess W2807041517 @default.
- W2807041517 hasPrimaryLocation W28070415171 @default.
- W2807041517 hasRelatedWork W1999676258 @default.
- W2807041517 hasRelatedWork W2019894092 @default.
- W2807041517 hasRelatedWork W2065306840 @default.
- W2807041517 hasRelatedWork W2087262817 @default.
- W2807041517 hasRelatedWork W2186237583 @default.
- W2807041517 hasRelatedWork W2288897087 @default.
- W2807041517 hasRelatedWork W2363128230 @default.
- W2807041517 hasRelatedWork W2905329095 @default.
- W2807041517 hasRelatedWork W29187006 @default.
- W2807041517 hasRelatedWork W3000929296 @default.
- W2807041517 hasVolume "11" @default.
- W2807041517 isParatext "false" @default.
- W2807041517 isRetracted "false" @default.
- W2807041517 magId "2807041517" @default.
- W2807041517 workType "article" @default.