Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807048542> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2807048542 abstract "Sentiment analysis and spam detection of social media text messages are two challenging data analysis tasks due to sparse and high-dimensional feature vectors. Learning classifier systems (LCS) are rule-based evolutionary computing systems and have limited capabilities to handle real valued sparse high-dimensional big data sets. LCS techniques use interval based representations to handle real valued feature vectors. In the work presented here, interval based representation is replaced by genetic programming based tree like structures to classify high-dimensional real valued text feature vectors. Multiple experiments are conducted on different social media text data sets, i.e. tweets, movie reviews, amazon and yelp reviews, SMS and Email spam message to evaluate the proposed scheme. Real valued feature vectors are generated from these data sets using term frequency inverse document frequency and/or sentiment lexicons-based features. Results depicts the supremacy of the new encoding scheme over interval based representations in both small and large social media text data sets." @default.
- W2807048542 created "2018-06-13" @default.
- W2807048542 creator A5029491810 @default.
- W2807048542 creator A5038832637 @default.
- W2807048542 creator A5065401444 @default.
- W2807048542 date "2017-11-01" @default.
- W2807048542 modified "2023-09-23" @default.
- W2807048542 title "Solving Social Media Text Classification Problems Using Code Fragment-Based XCSR" @default.
- W2807048542 cites W2009718765 @default.
- W2807048542 cites W2013993544 @default.
- W2807048542 cites W2023131636 @default.
- W2807048542 cites W2052153221 @default.
- W2807048542 cites W2067624665 @default.
- W2807048542 cites W2144415203 @default.
- W2807048542 cites W2156413587 @default.
- W2807048542 cites W2169107971 @default.
- W2807048542 cites W2251545731 @default.
- W2807048542 cites W2477329842 @default.
- W2807048542 cites W2612769033 @default.
- W2807048542 cites W4205184193 @default.
- W2807048542 cites W66373487 @default.
- W2807048542 doi "https://doi.org/10.1109/ictai.2017.00080" @default.
- W2807048542 hasPublicationYear "2017" @default.
- W2807048542 type Work @default.
- W2807048542 sameAs 2807048542 @default.
- W2807048542 citedByCount "2" @default.
- W2807048542 countsByYear W28070485422019 @default.
- W2807048542 countsByYear W28070485422023 @default.
- W2807048542 crossrefType "proceedings-article" @default.
- W2807048542 hasAuthorship W2807048542A5029491810 @default.
- W2807048542 hasAuthorship W2807048542A5038832637 @default.
- W2807048542 hasAuthorship W2807048542A5065401444 @default.
- W2807048542 hasConcept C110332635 @default.
- W2807048542 hasConcept C119857082 @default.
- W2807048542 hasConcept C121332964 @default.
- W2807048542 hasConcept C124101348 @default.
- W2807048542 hasConcept C125411270 @default.
- W2807048542 hasConcept C134306372 @default.
- W2807048542 hasConcept C136764020 @default.
- W2807048542 hasConcept C138885662 @default.
- W2807048542 hasConcept C154945302 @default.
- W2807048542 hasConcept C2776401178 @default.
- W2807048542 hasConcept C33923547 @default.
- W2807048542 hasConcept C41008148 @default.
- W2807048542 hasConcept C41895202 @default.
- W2807048542 hasConcept C518677369 @default.
- W2807048542 hasConcept C52622490 @default.
- W2807048542 hasConcept C61797465 @default.
- W2807048542 hasConcept C62520636 @default.
- W2807048542 hasConcept C66402592 @default.
- W2807048542 hasConcept C75684735 @default.
- W2807048542 hasConcept C77618280 @default.
- W2807048542 hasConcept C81758059 @default.
- W2807048542 hasConcept C83665646 @default.
- W2807048542 hasConcept C95623464 @default.
- W2807048542 hasConceptScore W2807048542C110332635 @default.
- W2807048542 hasConceptScore W2807048542C119857082 @default.
- W2807048542 hasConceptScore W2807048542C121332964 @default.
- W2807048542 hasConceptScore W2807048542C124101348 @default.
- W2807048542 hasConceptScore W2807048542C125411270 @default.
- W2807048542 hasConceptScore W2807048542C134306372 @default.
- W2807048542 hasConceptScore W2807048542C136764020 @default.
- W2807048542 hasConceptScore W2807048542C138885662 @default.
- W2807048542 hasConceptScore W2807048542C154945302 @default.
- W2807048542 hasConceptScore W2807048542C2776401178 @default.
- W2807048542 hasConceptScore W2807048542C33923547 @default.
- W2807048542 hasConceptScore W2807048542C41008148 @default.
- W2807048542 hasConceptScore W2807048542C41895202 @default.
- W2807048542 hasConceptScore W2807048542C518677369 @default.
- W2807048542 hasConceptScore W2807048542C52622490 @default.
- W2807048542 hasConceptScore W2807048542C61797465 @default.
- W2807048542 hasConceptScore W2807048542C62520636 @default.
- W2807048542 hasConceptScore W2807048542C66402592 @default.
- W2807048542 hasConceptScore W2807048542C75684735 @default.
- W2807048542 hasConceptScore W2807048542C77618280 @default.
- W2807048542 hasConceptScore W2807048542C81758059 @default.
- W2807048542 hasConceptScore W2807048542C83665646 @default.
- W2807048542 hasConceptScore W2807048542C95623464 @default.
- W2807048542 hasLocation W28070485421 @default.
- W2807048542 hasOpenAccess W2807048542 @default.
- W2807048542 hasPrimaryLocation W28070485421 @default.
- W2807048542 hasRelatedWork W2548274677 @default.
- W2807048542 hasRelatedWork W2951016540 @default.
- W2807048542 hasRelatedWork W2961085424 @default.
- W2807048542 hasRelatedWork W3014300295 @default.
- W2807048542 hasRelatedWork W3149206686 @default.
- W2807048542 hasRelatedWork W3192794374 @default.
- W2807048542 hasRelatedWork W4285169119 @default.
- W2807048542 hasRelatedWork W4312733094 @default.
- W2807048542 hasRelatedWork W4312793323 @default.
- W2807048542 hasRelatedWork W4362613237 @default.
- W2807048542 isParatext "false" @default.
- W2807048542 isRetracted "false" @default.
- W2807048542 magId "2807048542" @default.
- W2807048542 workType "article" @default.