Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807067488> ?p ?o ?g. }
- W2807067488 endingPage "10867" @default.
- W2807067488 startingPage "10859" @default.
- W2807067488 abstract "Artificial metalloenzymes (AME's) are an interesting class of selective catalysts, where the chiral environment of proteins is used as chiral ligand for a catalytic metal. Commonly, the active site of an enzyme is modified with a catalytically active metal. Here we present an approach, where the commercial proteins lysozyme (LYS) and bovine serum albumin (BSA) can be converted into highly active and enantioselective AME's. This is achieved by acylation of the proteins primary amino groups, which affords the metal salts in the core of the protein. A series of differently acylated LYS and BSA were reacted with K2 OsO2 (OH)4 , RuCl3 , and Ti(OMe)4 , respectively, and the conjugates were tested for their catalytic activity in dihydroxylation and epoxidation of styrene and its derivatives. The best suited system for dihydroxylation is fully acetylated LYS conjugated with K2 OsO2 (OH)4 , which converts styrene to 1,2-phenylethanediol with an enantioselectivity of 95 % ee (S). BSA fully acylated with hexanoic acid and conjugated with three moles RuCl3 per mole protein shows the highest ee values for the conversion of styrene to the respective epoxide with enenatioselectivities of over 80 % ee (R), a TON of more than 2500 and a yield of up to 78 % within 24 h at 40 °C. LYS has two favored selective binding sites for the metal catalyst and BSA has even three. The AME's with titanate in the active center invert the enantioselectivity of styrene epoxidation." @default.
- W2807067488 created "2018-06-13" @default.
- W2807067488 creator A5014130904 @default.
- W2807067488 creator A5030883033 @default.
- W2807067488 creator A5071367690 @default.
- W2807067488 creator A5074051852 @default.
- W2807067488 creator A5089927077 @default.
- W2807067488 date "2018-06-27" @default.
- W2807067488 modified "2023-09-25" @default.
- W2807067488 title "Multicore Artificial Metalloenzymes Derived from Acylated Proteins as Catalysts for the Enantioselective Dihydroxylation and Epoxidation of Styrene Derivatives" @default.
- W2807067488 cites W1549240509 @default.
- W2807067488 cites W1839815533 @default.
- W2807067488 cites W1892920256 @default.
- W2807067488 cites W1967632018 @default.
- W2807067488 cites W1969024947 @default.
- W2807067488 cites W1970202470 @default.
- W2807067488 cites W1974777844 @default.
- W2807067488 cites W1980281312 @default.
- W2807067488 cites W1984180361 @default.
- W2807067488 cites W1984406292 @default.
- W2807067488 cites W1993184072 @default.
- W2807067488 cites W1993776735 @default.
- W2807067488 cites W1994729905 @default.
- W2807067488 cites W2000834717 @default.
- W2807067488 cites W2008279485 @default.
- W2807067488 cites W2009119064 @default.
- W2807067488 cites W2011541576 @default.
- W2807067488 cites W2013053325 @default.
- W2807067488 cites W2016497464 @default.
- W2807067488 cites W2022471606 @default.
- W2807067488 cites W2024243908 @default.
- W2807067488 cites W2031073518 @default.
- W2807067488 cites W2038197401 @default.
- W2807067488 cites W2038933713 @default.
- W2807067488 cites W2048105348 @default.
- W2807067488 cites W2049661339 @default.
- W2807067488 cites W2063020466 @default.
- W2807067488 cites W2064529177 @default.
- W2807067488 cites W2066281033 @default.
- W2807067488 cites W2074606375 @default.
- W2807067488 cites W2076543349 @default.
- W2807067488 cites W2081431462 @default.
- W2807067488 cites W2082948336 @default.
- W2807067488 cites W2084731904 @default.
- W2807067488 cites W2087082458 @default.
- W2807067488 cites W2091883778 @default.
- W2807067488 cites W2098863758 @default.
- W2807067488 cites W2101982331 @default.
- W2807067488 cites W2102850556 @default.
- W2807067488 cites W2115938039 @default.
- W2807067488 cites W2118076612 @default.
- W2807067488 cites W2118363414 @default.
- W2807067488 cites W2119557075 @default.
- W2807067488 cites W2128082672 @default.
- W2807067488 cites W2155742128 @default.
- W2807067488 cites W2162709361 @default.
- W2807067488 cites W2169169527 @default.
- W2807067488 cites W2171610577 @default.
- W2807067488 cites W2193724920 @default.
- W2807067488 cites W2321038980 @default.
- W2807067488 cites W2333005155 @default.
- W2807067488 cites W2515115031 @default.
- W2807067488 cites W2575328826 @default.
- W2807067488 cites W2601660355 @default.
- W2807067488 cites W2735805114 @default.
- W2807067488 cites W2735839143 @default.
- W2807067488 cites W2738654161 @default.
- W2807067488 cites W2743934765 @default.
- W2807067488 cites W2779551360 @default.
- W2807067488 cites W2781816855 @default.
- W2807067488 cites W2782246467 @default.
- W2807067488 cites W2790388673 @default.
- W2807067488 cites W2951431959 @default.
- W2807067488 cites W4210980046 @default.
- W2807067488 cites W4214635259 @default.
- W2807067488 cites W4230017269 @default.
- W2807067488 cites W4230309961 @default.
- W2807067488 cites W4231483417 @default.
- W2807067488 cites W4249263094 @default.
- W2807067488 cites W642267899 @default.
- W2807067488 doi "https://doi.org/10.1002/chem.201802185" @default.
- W2807067488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29808506" @default.
- W2807067488 hasPublicationYear "2018" @default.
- W2807067488 type Work @default.
- W2807067488 sameAs 2807067488 @default.
- W2807067488 citedByCount "7" @default.
- W2807067488 countsByYear W28070674882020 @default.
- W2807067488 countsByYear W28070674882021 @default.
- W2807067488 countsByYear W28070674882022 @default.
- W2807067488 countsByYear W28070674882023 @default.
- W2807067488 crossrefType "journal-article" @default.
- W2807067488 hasAuthorship W2807067488A5014130904 @default.
- W2807067488 hasAuthorship W2807067488A5030883033 @default.
- W2807067488 hasAuthorship W2807067488A5071367690 @default.
- W2807067488 hasAuthorship W2807067488A5074051852 @default.
- W2807067488 hasAuthorship W2807067488A5089927077 @default.
- W2807067488 hasConcept C116569031 @default.
- W2807067488 hasConcept C146686406 @default.