Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807079308> ?p ?o ?g. }
- W2807079308 endingPage "27" @default.
- W2807079308 startingPage "15" @default.
- W2807079308 abstract "Abstract Rapid development of agriculture mechanization and the agro–industry in China (considered as a large agricultural country) has led to a substantial increase in energy consumption and CO2 emissions. Majority of existing studies usually explore the driving forces of the sector's CO2 emissions using the averaging method. However, data distribution of economic variables is often non–normal, with the tail having hidden important information. According to the average annual CO2 emissions, this paper divides China's 30 provinces into six quantile grades, and uses the quantile regression method to investigate the driving forces of CO2 emissions under high, medium, and low emission levels. The results show that the effects of economic growth on CO2 emissions in the upper 90th and 75th–90th quantile provinces are higher than in the 50th–75th, 25th–50th, 10th–25th and lower 10th quantile provinces due to the differences in fixed–asset investment and agricultural processing. The impact of energy efficiency in the upper 90th, 75th–90th, and 50th–75th quantile provinces are stronger than those in the 25th–50th, 10th–25th, and lower 10th quantile provinces because of the huge difference in R&D funding and R&D personnel investments. The effect of urbanization in the higher 90th quantile provinces is higher than in the other quantile provinces, owing to the differences in the level of agricultural mechanization and human capital accumulation. Similarly, financial capacity has the largest impact on CO2 emissions in the upper 90th quantile provinces in all quantile provinces. However, the impact of industrialization in the upper 90th quantile provinces is lower than in other quantile provinces. Thus, the heterogeneous effects of the driving forces should be taken into consideration when discussing CO2 emissions reduction in China's agriculture sector." @default.
- W2807079308 created "2018-06-13" @default.
- W2807079308 creator A5003679114 @default.
- W2807079308 creator A5077167691 @default.
- W2807079308 date "2018-10-01" @default.
- W2807079308 modified "2023-10-02" @default.
- W2807079308 title "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression" @default.
- W2807079308 cites W1142809333 @default.
- W2807079308 cites W1501835916 @default.
- W2807079308 cites W1543454425 @default.
- W2807079308 cites W1844790776 @default.
- W2807079308 cites W1924476434 @default.
- W2807079308 cites W1926270904 @default.
- W2807079308 cites W1963697600 @default.
- W2807079308 cites W1964014067 @default.
- W2807079308 cites W1984332806 @default.
- W2807079308 cites W2003663857 @default.
- W2807079308 cites W2006589070 @default.
- W2807079308 cites W2012225438 @default.
- W2807079308 cites W2022687928 @default.
- W2807079308 cites W2028330696 @default.
- W2807079308 cites W2046662654 @default.
- W2807079308 cites W2049016028 @default.
- W2807079308 cites W2068446084 @default.
- W2807079308 cites W2081192588 @default.
- W2807079308 cites W2094221602 @default.
- W2807079308 cites W2101052591 @default.
- W2807079308 cites W2145394512 @default.
- W2807079308 cites W2155547854 @default.
- W2807079308 cites W2161149736 @default.
- W2807079308 cites W2168984041 @default.
- W2807079308 cites W2172913149 @default.
- W2807079308 cites W2173708787 @default.
- W2807079308 cites W2178032104 @default.
- W2807079308 cites W2188706336 @default.
- W2807079308 cites W2237210655 @default.
- W2807079308 cites W2238233130 @default.
- W2807079308 cites W2275424541 @default.
- W2807079308 cites W2284920688 @default.
- W2807079308 cites W2289165505 @default.
- W2807079308 cites W2323948442 @default.
- W2807079308 cites W2326204951 @default.
- W2807079308 cites W2339857033 @default.
- W2807079308 cites W2413594434 @default.
- W2807079308 cites W2497806989 @default.
- W2807079308 cites W2518169855 @default.
- W2807079308 cites W2527085684 @default.
- W2807079308 cites W2531320822 @default.
- W2807079308 cites W2547716676 @default.
- W2807079308 cites W2548628656 @default.
- W2807079308 cites W2563213274 @default.
- W2807079308 cites W2566501962 @default.
- W2807079308 cites W2570991521 @default.
- W2807079308 cites W2573095291 @default.
- W2807079308 cites W2577794202 @default.
- W2807079308 cites W2583775938 @default.
- W2807079308 cites W2590491435 @default.
- W2807079308 cites W2591480217 @default.
- W2807079308 cites W2596730012 @default.
- W2807079308 cites W2738492238 @default.
- W2807079308 cites W2766425699 @default.
- W2807079308 cites W2792415008 @default.
- W2807079308 cites W4241996101 @default.
- W2807079308 doi "https://doi.org/10.1016/j.rser.2018.05.065" @default.
- W2807079308 hasPublicationYear "2018" @default.
- W2807079308 type Work @default.
- W2807079308 sameAs 2807079308 @default.
- W2807079308 citedByCount "112" @default.
- W2807079308 countsByYear W28070793082018 @default.
- W2807079308 countsByYear W28070793082019 @default.
- W2807079308 countsByYear W28070793082020 @default.
- W2807079308 countsByYear W28070793082021 @default.
- W2807079308 countsByYear W28070793082022 @default.
- W2807079308 countsByYear W28070793082023 @default.
- W2807079308 crossrefType "journal-article" @default.
- W2807079308 hasAuthorship W2807079308A5003679114 @default.
- W2807079308 hasAuthorship W2807079308A5077167691 @default.
- W2807079308 hasConcept C105795698 @default.
- W2807079308 hasConcept C118518473 @default.
- W2807079308 hasConcept C118671147 @default.
- W2807079308 hasConcept C149782125 @default.
- W2807079308 hasConcept C152877465 @default.
- W2807079308 hasConcept C162324750 @default.
- W2807079308 hasConcept C166957645 @default.
- W2807079308 hasConcept C191935318 @default.
- W2807079308 hasConcept C205649164 @default.
- W2807079308 hasConcept C33923547 @default.
- W2807079308 hasConcept C39432304 @default.
- W2807079308 hasConcept C48824518 @default.
- W2807079308 hasConcept C63817138 @default.
- W2807079308 hasConceptScore W2807079308C105795698 @default.
- W2807079308 hasConceptScore W2807079308C118518473 @default.
- W2807079308 hasConceptScore W2807079308C118671147 @default.
- W2807079308 hasConceptScore W2807079308C149782125 @default.
- W2807079308 hasConceptScore W2807079308C152877465 @default.
- W2807079308 hasConceptScore W2807079308C162324750 @default.
- W2807079308 hasConceptScore W2807079308C166957645 @default.
- W2807079308 hasConceptScore W2807079308C191935318 @default.