Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807115920> ?p ?o ?g. }
- W2807115920 endingPage "32" @default.
- W2807115920 startingPage "17" @default.
- W2807115920 abstract "The substantial measure of energy usage connected to the building atmosphere supports and sustains power usage modeling diligence. Amongst the numerous strategies to elaborate energy methods, supervised based machine learning approaches are immeasurable alternative to circumvent the inconvenience correlated to various engineering and data mining approaches when measured/observed data are accessible. This research depicts an analysis of electricity requirement forecasting by supervised based machine learning models with the limited data information. The power usage or energy consumption data is collected from power transmission and distribution networked organization independent system operator New England for one-year ahead energy forecasting. Moreover, energy consumption data is categorized into monthly, seasonally and yearly basis to foresee the performance for short-term, medium-term and long-term as well. Four-supervised based machine learning models employed for energy forecasting which are: i) Binary Decision Tree; ii) Compact Regression Gaussian Process; iii) Stepwise Gaussian Processes Regression; iv) Generalized Linear Regression Model. The input variables comprise the limited external environmental data, day-type/hour-type and the net energy consumption of various types of load. The output is the total energy demand of the building power usage. Modeling studies are escorted for expected energy demand in future perceptive based on Independent System Operator New England data. The performance evaluation indices applied in evaluating the model's forecasting error are coefficient of variation and mean absolute percentage error. In autumn season, the best MAPE and CV of the binary decision tree is 0.809% and 1.359% respectively for seasonal forecasting, and is 0.989% and 1.601% respectively for yearly forecasting. It is observed that the accuracy in forecasting is modest in the autumn season. In yearly prediction, the MAPE and CV of compact regression Gaussian process, stepwise Gaussian processes regression and generalized linear regression are 3.245% and 3.650%, 4.039% and 4.860%, 5.118% and 5.927% respectively. The machine learning model's performance compared and validated with the actual energy consumption, existing artificial neural network model and the mean absolute percentage error and coefficient of variation found 2.416% and 3.290% respectively for yearly prediction. It is depicted that including the utilization of limited energy usage and environmental data as one of the model's input variables, the electricity forecasting precision is more accurate, precise and can be improved." @default.
- W2807115920 created "2018-06-13" @default.
- W2807115920 creator A5001704713 @default.
- W2807115920 creator A5006225079 @default.
- W2807115920 creator A5030090943 @default.
- W2807115920 creator A5035551635 @default.
- W2807115920 creator A5046633215 @default.
- W2807115920 creator A5054440931 @default.
- W2807115920 creator A5060688354 @default.
- W2807115920 creator A5083868707 @default.
- W2807115920 creator A5091241527 @default.
- W2807115920 date "2018-09-01" @default.
- W2807115920 modified "2023-10-14" @default.
- W2807115920 title "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment" @default.
- W2807115920 cites W1664641836 @default.
- W2807115920 cites W1860632652 @default.
- W2807115920 cites W1977045974 @default.
- W2807115920 cites W1978602460 @default.
- W2807115920 cites W1991277158 @default.
- W2807115920 cites W2000164913 @default.
- W2807115920 cites W2031008166 @default.
- W2807115920 cites W2041261039 @default.
- W2807115920 cites W2047143310 @default.
- W2807115920 cites W2051607409 @default.
- W2807115920 cites W2064136412 @default.
- W2807115920 cites W2069934192 @default.
- W2807115920 cites W2070342971 @default.
- W2807115920 cites W2078297434 @default.
- W2807115920 cites W2079784202 @default.
- W2807115920 cites W2079907003 @default.
- W2807115920 cites W2083266970 @default.
- W2807115920 cites W2084341220 @default.
- W2807115920 cites W2090733552 @default.
- W2807115920 cites W2104571697 @default.
- W2807115920 cites W2106857564 @default.
- W2807115920 cites W2111528621 @default.
- W2807115920 cites W2129959438 @default.
- W2807115920 cites W2151560117 @default.
- W2807115920 cites W2152169257 @default.
- W2807115920 cites W2157370613 @default.
- W2807115920 cites W2158442843 @default.
- W2807115920 cites W2161257182 @default.
- W2807115920 cites W2461045302 @default.
- W2807115920 cites W2577062852 @default.
- W2807115920 cites W2761875693 @default.
- W2807115920 cites W2766651241 @default.
- W2807115920 cites W2789243543 @default.
- W2807115920 cites W2790459114 @default.
- W2807115920 cites W2791561409 @default.
- W2807115920 cites W2794809856 @default.
- W2807115920 doi "https://doi.org/10.1016/j.energy.2018.05.169" @default.
- W2807115920 hasPublicationYear "2018" @default.
- W2807115920 type Work @default.
- W2807115920 sameAs 2807115920 @default.
- W2807115920 citedByCount "80" @default.
- W2807115920 countsByYear W28071159202018 @default.
- W2807115920 countsByYear W28071159202019 @default.
- W2807115920 countsByYear W28071159202020 @default.
- W2807115920 countsByYear W28071159202021 @default.
- W2807115920 countsByYear W28071159202022 @default.
- W2807115920 countsByYear W28071159202023 @default.
- W2807115920 crossrefType "journal-article" @default.
- W2807115920 hasAuthorship W2807115920A5001704713 @default.
- W2807115920 hasAuthorship W2807115920A5006225079 @default.
- W2807115920 hasAuthorship W2807115920A5030090943 @default.
- W2807115920 hasAuthorship W2807115920A5035551635 @default.
- W2807115920 hasAuthorship W2807115920A5046633215 @default.
- W2807115920 hasAuthorship W2807115920A5054440931 @default.
- W2807115920 hasAuthorship W2807115920A5060688354 @default.
- W2807115920 hasAuthorship W2807115920A5083868707 @default.
- W2807115920 hasAuthorship W2807115920A5091241527 @default.
- W2807115920 hasConcept C105795698 @default.
- W2807115920 hasConcept C119599485 @default.
- W2807115920 hasConcept C119857082 @default.
- W2807115920 hasConcept C124101348 @default.
- W2807115920 hasConcept C127413603 @default.
- W2807115920 hasConcept C150217764 @default.
- W2807115920 hasConcept C152877465 @default.
- W2807115920 hasConcept C154945302 @default.
- W2807115920 hasConcept C169258074 @default.
- W2807115920 hasConcept C2780165032 @default.
- W2807115920 hasConcept C33923547 @default.
- W2807115920 hasConcept C41008148 @default.
- W2807115920 hasConcept C48921125 @default.
- W2807115920 hasConcept C50644808 @default.
- W2807115920 hasConcept C84525736 @default.
- W2807115920 hasConceptScore W2807115920C105795698 @default.
- W2807115920 hasConceptScore W2807115920C119599485 @default.
- W2807115920 hasConceptScore W2807115920C119857082 @default.
- W2807115920 hasConceptScore W2807115920C124101348 @default.
- W2807115920 hasConceptScore W2807115920C127413603 @default.
- W2807115920 hasConceptScore W2807115920C150217764 @default.
- W2807115920 hasConceptScore W2807115920C152877465 @default.
- W2807115920 hasConceptScore W2807115920C154945302 @default.
- W2807115920 hasConceptScore W2807115920C169258074 @default.
- W2807115920 hasConceptScore W2807115920C2780165032 @default.
- W2807115920 hasConceptScore W2807115920C33923547 @default.
- W2807115920 hasConceptScore W2807115920C41008148 @default.