Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807136170> ?p ?o ?g. }
- W2807136170 abstract "While significant progress has been achieved for Opinion Mining in Arabic (OMA), very limited efforts have been put towards the task of Emotion mining in Arabic. In fact, businesses are interested in learning a fine-grained representation of how users are feeling towards their products or services. In this work, we describe the methods used by the team Emotion Mining in Arabic (EMA), as part of the SemEval-2018 Task 1 for Affect Mining for Arabic tweets. EMA participated in all 5 subtasks. For the five tasks, several preprocessing steps were evaluated and eventually the best system included diacritics removal, elongation adjustment, replacement of emojis by the corresponding Arabic word, character normalization and light stemming. Moreover, several features were evaluated along with different classification and regression techniques. For the 5 subtasks, word embeddings feature turned out to perform best along with Ensemble technique. EMA achieved the 1st place in subtask 5, and 3rd place in subtasks 1 and 3." @default.
- W2807136170 created "2018-06-13" @default.
- W2807136170 creator A5011360203 @default.
- W2807136170 creator A5042406058 @default.
- W2807136170 creator A5066913213 @default.
- W2807136170 creator A5073543941 @default.
- W2807136170 creator A5079024911 @default.
- W2807136170 creator A5084025527 @default.
- W2807136170 creator A5088085383 @default.
- W2807136170 date "2018-01-01" @default.
- W2807136170 modified "2023-10-01" @default.
- W2807136170 title "EMA at SemEval-2018 Task 1: Emotion Mining for Arabic" @default.
- W2807136170 cites W150602506 @default.
- W2807136170 cites W1507909957 @default.
- W2807136170 cites W1518369940 @default.
- W2807136170 cites W157797599 @default.
- W2807136170 cites W1647292442 @default.
- W2807136170 cites W1966797434 @default.
- W2807136170 cites W2009724631 @default.
- W2807136170 cites W2019282135 @default.
- W2807136170 cites W2031167046 @default.
- W2807136170 cites W2040467972 @default.
- W2807136170 cites W2041689999 @default.
- W2807136170 cites W2052307613 @default.
- W2807136170 cites W2066064791 @default.
- W2807136170 cites W2077947807 @default.
- W2807136170 cites W2084046180 @default.
- W2807136170 cites W2097726431 @default.
- W2807136170 cites W2134175060 @default.
- W2807136170 cites W2139517011 @default.
- W2807136170 cites W2149134381 @default.
- W2807136170 cites W2150379272 @default.
- W2807136170 cites W2157205019 @default.
- W2807136170 cites W2162010436 @default.
- W2807136170 cites W2171468534 @default.
- W2807136170 cites W2177040365 @default.
- W2807136170 cites W2250645093 @default.
- W2807136170 cites W2251137535 @default.
- W2807136170 cites W2252067416 @default.
- W2807136170 cites W2404480901 @default.
- W2807136170 cites W2474565205 @default.
- W2807136170 cites W2492019793 @default.
- W2807136170 cites W2493916176 @default.
- W2807136170 cites W2588225831 @default.
- W2807136170 cites W2614072687 @default.
- W2807136170 cites W2615393547 @default.
- W2807136170 cites W2735966564 @default.
- W2807136170 cites W2741447225 @default.
- W2807136170 cites W2767299343 @default.
- W2807136170 cites W2767784948 @default.
- W2807136170 cites W2805744755 @default.
- W2807136170 cites W2806028205 @default.
- W2807136170 cites W2949709688 @default.
- W2807136170 cites W2962750587 @default.
- W2807136170 cites W2963177779 @default.
- W2807136170 cites W2964099336 @default.
- W2807136170 cites W3000337150 @default.
- W2807136170 cites W3172838183 @default.
- W2807136170 cites W3706556 @default.
- W2807136170 cites W66373487 @default.
- W2807136170 doi "https://doi.org/10.18653/v1/s18-1036" @default.
- W2807136170 hasPublicationYear "2018" @default.
- W2807136170 type Work @default.
- W2807136170 sameAs 2807136170 @default.
- W2807136170 citedByCount "36" @default.
- W2807136170 countsByYear W28071361702018 @default.
- W2807136170 countsByYear W28071361702019 @default.
- W2807136170 countsByYear W28071361702020 @default.
- W2807136170 countsByYear W28071361702021 @default.
- W2807136170 countsByYear W28071361702022 @default.
- W2807136170 countsByYear W28071361702023 @default.
- W2807136170 crossrefType "proceedings-article" @default.
- W2807136170 hasAuthorship W2807136170A5011360203 @default.
- W2807136170 hasAuthorship W2807136170A5042406058 @default.
- W2807136170 hasAuthorship W2807136170A5066913213 @default.
- W2807136170 hasAuthorship W2807136170A5073543941 @default.
- W2807136170 hasAuthorship W2807136170A5079024911 @default.
- W2807136170 hasAuthorship W2807136170A5084025527 @default.
- W2807136170 hasAuthorship W2807136170A5088085383 @default.
- W2807136170 hasBestOaLocation W28071361701 @default.
- W2807136170 hasConcept C108583219 @default.
- W2807136170 hasConcept C125496544 @default.
- W2807136170 hasConcept C136886441 @default.
- W2807136170 hasConcept C138885662 @default.
- W2807136170 hasConcept C144024400 @default.
- W2807136170 hasConcept C154945302 @default.
- W2807136170 hasConcept C162324750 @default.
- W2807136170 hasConcept C187736073 @default.
- W2807136170 hasConcept C19165224 @default.
- W2807136170 hasConcept C204321447 @default.
- W2807136170 hasConcept C2776401178 @default.
- W2807136170 hasConcept C2777462759 @default.
- W2807136170 hasConcept C2778827112 @default.
- W2807136170 hasConcept C2780451532 @default.
- W2807136170 hasConcept C34736171 @default.
- W2807136170 hasConcept C41008148 @default.
- W2807136170 hasConcept C41608201 @default.
- W2807136170 hasConcept C41895202 @default.
- W2807136170 hasConcept C44572571 @default.
- W2807136170 hasConcept C66402592 @default.