Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807143630> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2807143630 abstract "Software vulnerabilities can expose computer systems to attacks by malicious actors. With the number of vulnerabilities discovered in the recent years surging, creating timely patches for every vulnerability is not always feasible. At the same time, not every vulnerability will be exploited by attackers; hence, prioritizing vulnerabilities by assessing the likelihood they will be exploited has become an important research problem. Recent works used machine learning techniques to predict exploited vulnerabilities by analyzing discussions about vulnerabilities on social media. These methods relied on traditional text processing techniques, which represent statistical features of words, but fail to capture their context. To address this challenge, we propose DarkEmbed, a neural language modeling approach that learns low dimensional distributed representations, i.e., embeddings, of darkweb/deepweb discussions to predict whether vulnerabilities will be exploited. By capturing linguistic regularities of human language, such as syntactic, semantic similarity and logic analogy, the learned embeddings are better able to classify discussions about exploited vulnerabilities than traditional text analysis methods. Evaluations demonstrate the efficacy of learned embeddings on both structured text (such as security blog posts) and unstructured text (darkweb/deepweb posts). DarkEmbed outperforms state-of-the-art approaches on the exploit prediction task with an F1-score of 0.74." @default.
- W2807143630 created "2018-06-13" @default.
- W2807143630 creator A5000702925 @default.
- W2807143630 creator A5011797382 @default.
- W2807143630 creator A5049634383 @default.
- W2807143630 creator A5076796267 @default.
- W2807143630 creator A5081115472 @default.
- W2807143630 date "2018-04-27" @default.
- W2807143630 modified "2023-10-03" @default.
- W2807143630 title "DarkEmbed: Exploit Prediction With Neural Language Models" @default.
- W2807143630 doi "https://doi.org/10.1609/aaai.v32i1.11428" @default.
- W2807143630 hasPublicationYear "2018" @default.
- W2807143630 type Work @default.
- W2807143630 sameAs 2807143630 @default.
- W2807143630 citedByCount "37" @default.
- W2807143630 countsByYear W28071436302018 @default.
- W2807143630 countsByYear W28071436302019 @default.
- W2807143630 countsByYear W28071436302020 @default.
- W2807143630 countsByYear W28071436302021 @default.
- W2807143630 countsByYear W28071436302022 @default.
- W2807143630 countsByYear W28071436302023 @default.
- W2807143630 crossrefType "journal-article" @default.
- W2807143630 hasAuthorship W2807143630A5000702925 @default.
- W2807143630 hasAuthorship W2807143630A5011797382 @default.
- W2807143630 hasAuthorship W2807143630A5049634383 @default.
- W2807143630 hasAuthorship W2807143630A5076796267 @default.
- W2807143630 hasAuthorship W2807143630A5081115472 @default.
- W2807143630 hasBestOaLocation W28071436301 @default.
- W2807143630 hasConcept C119857082 @default.
- W2807143630 hasConcept C137293760 @default.
- W2807143630 hasConcept C138885662 @default.
- W2807143630 hasConcept C151730666 @default.
- W2807143630 hasConcept C154945302 @default.
- W2807143630 hasConcept C162324750 @default.
- W2807143630 hasConcept C165696696 @default.
- W2807143630 hasConcept C187736073 @default.
- W2807143630 hasConcept C204321447 @default.
- W2807143630 hasConcept C2522767166 @default.
- W2807143630 hasConcept C2779343474 @default.
- W2807143630 hasConcept C2780451532 @default.
- W2807143630 hasConcept C38652104 @default.
- W2807143630 hasConcept C41008148 @default.
- W2807143630 hasConcept C41895202 @default.
- W2807143630 hasConcept C521332185 @default.
- W2807143630 hasConcept C86803240 @default.
- W2807143630 hasConcept C95713431 @default.
- W2807143630 hasConceptScore W2807143630C119857082 @default.
- W2807143630 hasConceptScore W2807143630C137293760 @default.
- W2807143630 hasConceptScore W2807143630C138885662 @default.
- W2807143630 hasConceptScore W2807143630C151730666 @default.
- W2807143630 hasConceptScore W2807143630C154945302 @default.
- W2807143630 hasConceptScore W2807143630C162324750 @default.
- W2807143630 hasConceptScore W2807143630C165696696 @default.
- W2807143630 hasConceptScore W2807143630C187736073 @default.
- W2807143630 hasConceptScore W2807143630C204321447 @default.
- W2807143630 hasConceptScore W2807143630C2522767166 @default.
- W2807143630 hasConceptScore W2807143630C2779343474 @default.
- W2807143630 hasConceptScore W2807143630C2780451532 @default.
- W2807143630 hasConceptScore W2807143630C38652104 @default.
- W2807143630 hasConceptScore W2807143630C41008148 @default.
- W2807143630 hasConceptScore W2807143630C41895202 @default.
- W2807143630 hasConceptScore W2807143630C521332185 @default.
- W2807143630 hasConceptScore W2807143630C86803240 @default.
- W2807143630 hasConceptScore W2807143630C95713431 @default.
- W2807143630 hasIssue "1" @default.
- W2807143630 hasLocation W28071436301 @default.
- W2807143630 hasOpenAccess W2807143630 @default.
- W2807143630 hasPrimaryLocation W28071436301 @default.
- W2807143630 hasRelatedWork W1968625315 @default.
- W2807143630 hasRelatedWork W2331043530 @default.
- W2807143630 hasRelatedWork W2359001871 @default.
- W2807143630 hasRelatedWork W2368911326 @default.
- W2807143630 hasRelatedWork W2891427086 @default.
- W2807143630 hasRelatedWork W2906845177 @default.
- W2807143630 hasRelatedWork W2997512100 @default.
- W2807143630 hasRelatedWork W4200107511 @default.
- W2807143630 hasRelatedWork W4205820553 @default.
- W2807143630 hasRelatedWork W922414892 @default.
- W2807143630 hasVolume "32" @default.
- W2807143630 isParatext "false" @default.
- W2807143630 isRetracted "false" @default.
- W2807143630 magId "2807143630" @default.
- W2807143630 workType "article" @default.