Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807199323> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2807199323 abstract "One of the striking developments since the beginning of this century is the proliferation of positioning technology devices in vehicles or with people. Large amounts of mobility data are recorded every day, entailing the necessity of efficient processing and analysis methods. Therefore, the management of such data, also called trajectories, has become a very active research field, particularly in the scope of spatiotemporal database management systems.Methods of associating semantic information to raw geographic trajectories by relating them to the spatial environment have been studied extensively. A question is how the resulting trajectories can be represented and especially queried in a convenient and efficient way. Moreover, in many cases, not only the geographic positions, but also additional time-dependent information regarding the moving entity are traced and/or generated, according to the purpose of the evaluation. For example, in the field of animal behavior research, besides the position of the monitored animal, biologists are interested in further data such as the altitude or the temperature at every measuring point. Other application domains comprise medical, logistic, or investigative information that can be recorded along with (or instead of) the geographic position of a person, animal, vehicle, etc.In this thesis, we propose a systematic and comprehensive study of annotated trajectory databases. A simple generic model called symbolic trajectory is defined to capture a wide range of meanings, either derived from a geometric trajectory or related to other time-dependent values. In its most essential form, a symbolic trajectory is just a time-dependent label; variants contain sets of labels, places, or sets of places. They are modeled as abstract data types and integrated into a well established framework of data types and operations formoving objects. Symbolic trajectories can represent, for example, the names of traversed roads obtained by map matching, transportation modes (walk, train, bus, etc.), a speed profile in symbolic form (e.g., fast, very fast, moderate), cells of a cellular network, certain behaviors of animals, names of restaurants within a certain distance, and so forth. Symbolic trajectories can be combined with geometric trajectories to obtain annotated trajectories.Besides the model, the main technical contribution of the thesis is a language for pattern matching and rewriting of symbolic trajectories, including efficient matching algorithms. A symbolic trajectory can be represented as a sequence of pairs of a time interval and a label. Such a pair is called a unit. A pattern consists of unit patterns (specifications for time interval and/or label) and wildcards, matching units and sequences of units, respectively, as well as regular expressions over such elements. It may further contain variables that can be used in conditions and in rewriting. Conditions and expressions in rewriting may use arbitrary operations available for querying in the host DBMS environment which makes the language extensible and highly expressive.We formally define the data model and syntax and semantics of the pattern language. Query operations are offered to integrate pattern matching, rewriting, and classification of symbolic trajectories into a DBMS querying environment. The implementation of the model using finite state machines and two indexes is described in detail. An experimental evaluation demonstrates the efficiency of the implementation. In particular, it shows considerable improvements in storage space and response time in a comparison of symbolic and geometric trajectories for several queries that can be executed on both types of trajectories.We also present in detail an approach for analyzing datasets with arbitrarily many time-dependent attributes. This can be considered as a major extension and generalization of our work on symbolic trajectories. For an efficient processing of different data types, a variable number of indexes of four different types that correspond to the data types of the attributes are applied. Again, we demonstrate the expressiveness and efficiency of our approach with a broad series of experiments using generated as well as real trajectories combined with geological raster data.A separate chapter is dedicated to a choice of application examples for pattern matching on symbolic trajectories and on tuples of time-dependent values." @default.
- W2807199323 created "2018-06-13" @default.
- W2807199323 creator A5057325316 @default.
- W2807199323 date "2017-01-01" @default.
- W2807199323 modified "2023-09-23" @default.
- W2807199323 title "Framework for Pattern Matching on Symbolic Trajectories and Tuples of Time-dependent ValuesA" @default.
- W2807199323 hasPublicationYear "2017" @default.
- W2807199323 type Work @default.
- W2807199323 sameAs 2807199323 @default.
- W2807199323 citedByCount "0" @default.
- W2807199323 crossrefType "dissertation" @default.
- W2807199323 hasAuthorship W2807199323A5057325316 @default.
- W2807199323 hasConcept C10138342 @default.
- W2807199323 hasConcept C105795698 @default.
- W2807199323 hasConcept C118615104 @default.
- W2807199323 hasConcept C118930307 @default.
- W2807199323 hasConcept C121332964 @default.
- W2807199323 hasConcept C124101348 @default.
- W2807199323 hasConcept C127413603 @default.
- W2807199323 hasConcept C1276947 @default.
- W2807199323 hasConcept C13662910 @default.
- W2807199323 hasConcept C146978453 @default.
- W2807199323 hasConcept C154945302 @default.
- W2807199323 hasConcept C162324750 @default.
- W2807199323 hasConcept C165064840 @default.
- W2807199323 hasConcept C198082294 @default.
- W2807199323 hasConcept C202444582 @default.
- W2807199323 hasConcept C204323151 @default.
- W2807199323 hasConcept C23123220 @default.
- W2807199323 hasConcept C2522767166 @default.
- W2807199323 hasConcept C2524010 @default.
- W2807199323 hasConcept C2781238097 @default.
- W2807199323 hasConcept C28719098 @default.
- W2807199323 hasConcept C33923547 @default.
- W2807199323 hasConcept C41008148 @default.
- W2807199323 hasConcept C9652623 @default.
- W2807199323 hasConceptScore W2807199323C10138342 @default.
- W2807199323 hasConceptScore W2807199323C105795698 @default.
- W2807199323 hasConceptScore W2807199323C118615104 @default.
- W2807199323 hasConceptScore W2807199323C118930307 @default.
- W2807199323 hasConceptScore W2807199323C121332964 @default.
- W2807199323 hasConceptScore W2807199323C124101348 @default.
- W2807199323 hasConceptScore W2807199323C127413603 @default.
- W2807199323 hasConceptScore W2807199323C1276947 @default.
- W2807199323 hasConceptScore W2807199323C13662910 @default.
- W2807199323 hasConceptScore W2807199323C146978453 @default.
- W2807199323 hasConceptScore W2807199323C154945302 @default.
- W2807199323 hasConceptScore W2807199323C162324750 @default.
- W2807199323 hasConceptScore W2807199323C165064840 @default.
- W2807199323 hasConceptScore W2807199323C198082294 @default.
- W2807199323 hasConceptScore W2807199323C202444582 @default.
- W2807199323 hasConceptScore W2807199323C204323151 @default.
- W2807199323 hasConceptScore W2807199323C23123220 @default.
- W2807199323 hasConceptScore W2807199323C2522767166 @default.
- W2807199323 hasConceptScore W2807199323C2524010 @default.
- W2807199323 hasConceptScore W2807199323C2781238097 @default.
- W2807199323 hasConceptScore W2807199323C28719098 @default.
- W2807199323 hasConceptScore W2807199323C33923547 @default.
- W2807199323 hasConceptScore W2807199323C41008148 @default.
- W2807199323 hasConceptScore W2807199323C9652623 @default.
- W2807199323 hasLocation W28071993231 @default.
- W2807199323 hasOpenAccess W2807199323 @default.
- W2807199323 hasPrimaryLocation W28071993231 @default.
- W2807199323 hasRelatedWork W1127858866 @default.
- W2807199323 hasRelatedWork W1181141908 @default.
- W2807199323 hasRelatedWork W1526237952 @default.
- W2807199323 hasRelatedWork W1532260489 @default.
- W2807199323 hasRelatedWork W1540223638 @default.
- W2807199323 hasRelatedWork W1601240829 @default.
- W2807199323 hasRelatedWork W188860745 @default.
- W2807199323 hasRelatedWork W1989037929 @default.
- W2807199323 hasRelatedWork W2143757330 @default.
- W2807199323 hasRelatedWork W2149711302 @default.
- W2807199323 hasRelatedWork W2184147555 @default.
- W2807199323 hasRelatedWork W2294679658 @default.
- W2807199323 hasRelatedWork W2330938701 @default.
- W2807199323 hasRelatedWork W2534556193 @default.
- W2807199323 hasRelatedWork W2891220991 @default.
- W2807199323 hasRelatedWork W2906976759 @default.
- W2807199323 hasRelatedWork W312793849 @default.
- W2807199323 hasRelatedWork W3197822619 @default.
- W2807199323 hasRelatedWork W2108469611 @default.
- W2807199323 hasRelatedWork W2122109316 @default.
- W2807199323 isParatext "false" @default.
- W2807199323 isRetracted "false" @default.
- W2807199323 magId "2807199323" @default.
- W2807199323 workType "dissertation" @default.