Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807201907> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2807201907 abstract "The high cost, complexity and multimodality of clinical data collection restrain the datasets available for predictive modelling using machine learning (ML), thus necessitating new data-efficient approaches specifically for limited datasets. This interdisciplinary thesis focuses on clinical outcome modelling using a range of ML techniques, including artificial neural networks (NNs) and their ensembles, decision trees (DTs) and random forests (RFs), as well as classical logistic regression (LR) and Cox proportional hazards (Cox PH) models. The utility of ML for data-efficient regression, classification and survival analyses was investigated in three clinical applications, whereby exposing the common limitations inherent in patient data, such as class imbalance, incomplete samples, and, in particular, limited dataset size. The latter problem was addressed by developing a methodological framework for learning from datasets with less than 10 observations per predictor variable. A novel method of multiple runs overcame the volatility of NN and DT models due to limited training samples, while a surrogate data test allowed for regression model evaluation in the presence of noise due to limited dataset size. When applied to hard tissue engineering for predicting femoral fracture risk, the framework resulted in 98.3% accurate regression NN. The framework was used to detect early rejection in antibody- incompatible kidney transplantation, achieving 85% accurate classification DT. The third clinical task – that of predicting 10-year incidence of type 2 diabetes in the UK population – resulted in 70-85% accurate classification and survival models, whilst highlighting the challenges of learning with the limited information characteristic of routinely collected data. By discovering unintuitive patterns, supporting existing hypotheses and generating novel insight, the ML models developed in this research contributed meaningfully to clinical research and paved the way for data-efficient applications of ML in engineering and clinical practice." @default.
- W2807201907 created "2018-06-13" @default.
- W2807201907 creator A5080174070 @default.
- W2807201907 date "2017-12-12" @default.
- W2807201907 modified "2023-09-25" @default.
- W2807201907 title "Machine learning with limited information : risk stratification and predictive modelling for clinical applications." @default.
- W2807201907 hasPublicationYear "2017" @default.
- W2807201907 type Work @default.
- W2807201907 sameAs 2807201907 @default.
- W2807201907 citedByCount "0" @default.
- W2807201907 crossrefType "dissertation" @default.
- W2807201907 hasAuthorship W2807201907A5080174070 @default.
- W2807201907 hasConcept C105795698 @default.
- W2807201907 hasConcept C119857082 @default.
- W2807201907 hasConcept C12267149 @default.
- W2807201907 hasConcept C124101348 @default.
- W2807201907 hasConcept C151956035 @default.
- W2807201907 hasConcept C154945302 @default.
- W2807201907 hasConcept C169258074 @default.
- W2807201907 hasConcept C2908647359 @default.
- W2807201907 hasConcept C33923547 @default.
- W2807201907 hasConcept C41008148 @default.
- W2807201907 hasConcept C50382708 @default.
- W2807201907 hasConcept C71924100 @default.
- W2807201907 hasConcept C83546350 @default.
- W2807201907 hasConcept C84525736 @default.
- W2807201907 hasConcept C99454951 @default.
- W2807201907 hasConceptScore W2807201907C105795698 @default.
- W2807201907 hasConceptScore W2807201907C119857082 @default.
- W2807201907 hasConceptScore W2807201907C12267149 @default.
- W2807201907 hasConceptScore W2807201907C124101348 @default.
- W2807201907 hasConceptScore W2807201907C151956035 @default.
- W2807201907 hasConceptScore W2807201907C154945302 @default.
- W2807201907 hasConceptScore W2807201907C169258074 @default.
- W2807201907 hasConceptScore W2807201907C2908647359 @default.
- W2807201907 hasConceptScore W2807201907C33923547 @default.
- W2807201907 hasConceptScore W2807201907C41008148 @default.
- W2807201907 hasConceptScore W2807201907C50382708 @default.
- W2807201907 hasConceptScore W2807201907C71924100 @default.
- W2807201907 hasConceptScore W2807201907C83546350 @default.
- W2807201907 hasConceptScore W2807201907C84525736 @default.
- W2807201907 hasConceptScore W2807201907C99454951 @default.
- W2807201907 hasLocation W28072019071 @default.
- W2807201907 hasOpenAccess W2807201907 @default.
- W2807201907 hasPrimaryLocation W28072019071 @default.
- W2807201907 hasRelatedWork W1997796151 @default.
- W2807201907 hasRelatedWork W2060947741 @default.
- W2807201907 hasRelatedWork W2141895973 @default.
- W2807201907 hasRelatedWork W2163048132 @default.
- W2807201907 hasRelatedWork W2293904505 @default.
- W2807201907 hasRelatedWork W2324391617 @default.
- W2807201907 hasRelatedWork W2743290385 @default.
- W2807201907 hasRelatedWork W2757722543 @default.
- W2807201907 hasRelatedWork W2771885314 @default.
- W2807201907 hasRelatedWork W2901206318 @default.
- W2807201907 hasRelatedWork W2919555334 @default.
- W2807201907 hasRelatedWork W2989933809 @default.
- W2807201907 hasRelatedWork W2995910134 @default.
- W2807201907 hasRelatedWork W3088090817 @default.
- W2807201907 hasRelatedWork W3105192099 @default.
- W2807201907 hasRelatedWork W3116718021 @default.
- W2807201907 hasRelatedWork W3124729222 @default.
- W2807201907 hasRelatedWork W3132847290 @default.
- W2807201907 hasRelatedWork W3176888456 @default.
- W2807201907 hasRelatedWork W3208166579 @default.
- W2807201907 isParatext "false" @default.
- W2807201907 isRetracted "false" @default.
- W2807201907 magId "2807201907" @default.
- W2807201907 workType "dissertation" @default.