Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807249293> ?p ?o ?g. }
- W2807249293 endingPage "459" @default.
- W2807249293 startingPage "443" @default.
- W2807249293 abstract "In this paper, we consider two chaotic finance models recently studied in the literature. The first one, introduced by Huang and Li, has a form of three first-order nonlinear differential equations $$begin{aligned} dot{x}=z+(y-a)x,,, dot{y}=1-b y-x^2,,, dot{z}=-,x-c z. end{aligned}$$ The second system, called a hyperchaotic finance model, is defined by $$begin{aligned} begin{aligned}&dot{x}=z+(y-a)x+u, &dot{z}=-,x-c z, end{aligned}&begin{aligned}&dot{y}=1-b y-x^2,&dot{u}=-,d xy-k u. end{aligned} end{aligned}$$ In both models, (a, b, c, d, k) are real positive parameters. In order to present the complexity of these systems Poincaré cross sections, bifurcation diagrams, Lyapunov exponents spectrum and the Kaplan–Yorke dimension have been calculated. Moreover, we show that the Huang–Li system is not integrable in a class of functions meromorphic in variables (x, y, z), for all real values of parameters (a, b, c), while the hyperchaotic system is not integrable in the case when $$k=c$$ and $$Delta :=1+d(a+d-c)>0$$ . We give analytic proofs of these facts analyzing properties of the differential Galois groups of variational equations along certain particular solutions. On the other hand, we show that for certain sets of the parameters (a, b, c, d, k), when $$Delta le 0$$ , the hyperchaotic system possesses a polynomial first integral, which can be used to reduce the dimension of the system by one." @default.
- W2807249293 created "2018-06-13" @default.
- W2807249293 creator A5003557685 @default.
- W2807249293 date "2018-05-28" @default.
- W2807249293 modified "2023-10-14" @default.
- W2807249293 title "Integrability analysis of chaotic and hyperchaotic finance systems" @default.
- W2807249293 cites W1237724740 @default.
- W2807249293 cites W1550473901 @default.
- W2807249293 cites W1560726565 @default.
- W2807249293 cites W1590353515 @default.
- W2807249293 cites W1673830914 @default.
- W2807249293 cites W1863658077 @default.
- W2807249293 cites W1870105587 @default.
- W2807249293 cites W1905163604 @default.
- W2807249293 cites W1933091254 @default.
- W2807249293 cites W1967510217 @default.
- W2807249293 cites W1976451792 @default.
- W2807249293 cites W1977303376 @default.
- W2807249293 cites W1981938655 @default.
- W2807249293 cites W1999647937 @default.
- W2807249293 cites W2005241888 @default.
- W2807249293 cites W2005949116 @default.
- W2807249293 cites W2006249857 @default.
- W2807249293 cites W2011872755 @default.
- W2807249293 cites W2020941050 @default.
- W2807249293 cites W2024556493 @default.
- W2807249293 cites W2044629502 @default.
- W2807249293 cites W2045645156 @default.
- W2807249293 cites W2050972639 @default.
- W2807249293 cites W2054151158 @default.
- W2807249293 cites W2062572728 @default.
- W2807249293 cites W2065119280 @default.
- W2807249293 cites W2067358142 @default.
- W2807249293 cites W2069436097 @default.
- W2807249293 cites W2073018966 @default.
- W2807249293 cites W2073719132 @default.
- W2807249293 cites W2075810436 @default.
- W2807249293 cites W2078857885 @default.
- W2807249293 cites W2087464656 @default.
- W2807249293 cites W2095664104 @default.
- W2807249293 cites W2102892532 @default.
- W2807249293 cites W2105406131 @default.
- W2807249293 cites W2125566231 @default.
- W2807249293 cites W2141394518 @default.
- W2807249293 cites W2142587090 @default.
- W2807249293 cites W2143313217 @default.
- W2807249293 cites W2152254020 @default.
- W2807249293 cites W2164535442 @default.
- W2807249293 cites W2278867993 @default.
- W2807249293 cites W2317263720 @default.
- W2807249293 cites W2395402993 @default.
- W2807249293 cites W2534134457 @default.
- W2807249293 cites W2585728124 @default.
- W2807249293 cites W2588215398 @default.
- W2807249293 cites W2601050650 @default.
- W2807249293 cites W2604893559 @default.
- W2807249293 cites W2605711220 @default.
- W2807249293 cites W2618243107 @default.
- W2807249293 cites W2625172642 @default.
- W2807249293 cites W2691165281 @default.
- W2807249293 cites W2768027244 @default.
- W2807249293 cites W2768188847 @default.
- W2807249293 cites W2781246799 @default.
- W2807249293 cites W2789583870 @default.
- W2807249293 cites W3106159172 @default.
- W2807249293 cites W4229497514 @default.
- W2807249293 cites W4232347461 @default.
- W2807249293 cites W4245425871 @default.
- W2807249293 cites W47963129 @default.
- W2807249293 doi "https://doi.org/10.1007/s11071-018-4370-3" @default.
- W2807249293 hasPublicationYear "2018" @default.
- W2807249293 type Work @default.
- W2807249293 sameAs 2807249293 @default.
- W2807249293 citedByCount "17" @default.
- W2807249293 countsByYear W28072492932019 @default.
- W2807249293 countsByYear W28072492932020 @default.
- W2807249293 countsByYear W28072492932021 @default.
- W2807249293 countsByYear W28072492932022 @default.
- W2807249293 countsByYear W28072492932023 @default.
- W2807249293 crossrefType "journal-article" @default.
- W2807249293 hasAuthorship W2807249293A5003557685 @default.
- W2807249293 hasBestOaLocation W28072492931 @default.
- W2807249293 hasConcept C10138342 @default.
- W2807249293 hasConcept C118615104 @default.
- W2807249293 hasConcept C121332964 @default.
- W2807249293 hasConcept C134306372 @default.
- W2807249293 hasConcept C158622935 @default.
- W2807249293 hasConcept C162324750 @default.
- W2807249293 hasConcept C182306322 @default.
- W2807249293 hasConcept C190333341 @default.
- W2807249293 hasConcept C191544260 @default.
- W2807249293 hasConcept C200741047 @default.
- W2807249293 hasConcept C202444582 @default.
- W2807249293 hasConcept C33676613 @default.
- W2807249293 hasConcept C33923547 @default.
- W2807249293 hasConcept C37914503 @default.
- W2807249293 hasConcept C62520636 @default.
- W2807249293 hasConcept C90119067 @default.