Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807258775> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2807258775 abstract "The Internet of Things (IoT) has been growing in recent years with the improvements in several different applications in the military, marine, intelligent transportation, smart health, smart grid, smart home and smart city domains. Although IoT brings significant advantages over traditional information and communication (ICT) technologies for Intelligent Transportation Systems (ITS), these applications are still very rare. Although there is a continuous improvement in road and vehicle safety, as well as improvements in IoT, the road traffic accidents have been increasing over the last decades. Therefore, it is necessary to find an effective way to reduce the frequency and severity of traffic accidents. Hence, this paper presents an intelligent traffic accident detection system in which vehicles exchange their microscopic vehicle variables with each other. The proposed system uses simulated data collected from vehicular ad-hoc networks (VANETs) based on the speeds and coordinates of the vehicles and then, it sends traffic alerts to the drivers. Furthermore, it shows how machine learning methods can be exploited to detect accidents on freeways in ITS. It is shown that if position and velocity values of every vehicle are given, vehicles' behavior could be analyzed and accidents can be detected easily. Supervised machine learning algorithms such as Artificial Neural Networks (ANN), Support Vector Machine (SVM), and Random Forests (RF) are implemented on traffic data to develop a model to distinguish accident cases from normal cases. The performance of RF algorithm, in terms of its accuracy, was found superior to ANN and SVM algorithms. RF algorithm has showed better performance with 91.56% accuracy than SVM with 88.71% and ANN with 90.02% accuracy." @default.
- W2807258775 created "2018-06-13" @default.
- W2807258775 creator A5075888799 @default.
- W2807258775 creator A5076009908 @default.
- W2807258775 date "2018-02-01" @default.
- W2807258775 modified "2023-10-17" @default.
- W2807258775 title "Traffic accident detection using random forest classifier" @default.
- W2807258775 cites W1966330783 @default.
- W2807258775 cites W1969886524 @default.
- W2807258775 cites W1982770030 @default.
- W2807258775 cites W2005149377 @default.
- W2807258775 cites W2034489756 @default.
- W2807258775 cites W2035852469 @default.
- W2807258775 cites W2039584196 @default.
- W2807258775 cites W2058205822 @default.
- W2807258775 cites W2071453692 @default.
- W2807258775 cites W2095879822 @default.
- W2807258775 cites W2101047963 @default.
- W2807258775 cites W2107950496 @default.
- W2807258775 cites W2119361289 @default.
- W2807258775 cites W2128558188 @default.
- W2807258775 cites W2138190221 @default.
- W2807258775 cites W2158954469 @default.
- W2807258775 cites W2159167759 @default.
- W2807258775 cites W2168046506 @default.
- W2807258775 cites W2213620478 @default.
- W2807258775 cites W2561722812 @default.
- W2807258775 cites W2593656009 @default.
- W2807258775 cites W2726150830 @default.
- W2807258775 cites W2911964244 @default.
- W2807258775 cites W4248080042 @default.
- W2807258775 cites W74974833 @default.
- W2807258775 doi "https://doi.org/10.1109/lt.2018.8368509" @default.
- W2807258775 hasPublicationYear "2018" @default.
- W2807258775 type Work @default.
- W2807258775 sameAs 2807258775 @default.
- W2807258775 citedByCount "128" @default.
- W2807258775 countsByYear W28072587752018 @default.
- W2807258775 countsByYear W28072587752019 @default.
- W2807258775 countsByYear W28072587752020 @default.
- W2807258775 countsByYear W28072587752021 @default.
- W2807258775 countsByYear W28072587752022 @default.
- W2807258775 countsByYear W28072587752023 @default.
- W2807258775 crossrefType "proceedings-article" @default.
- W2807258775 hasAuthorship W2807258775A5075888799 @default.
- W2807258775 hasAuthorship W2807258775A5076009908 @default.
- W2807258775 hasConcept C119857082 @default.
- W2807258775 hasConcept C12267149 @default.
- W2807258775 hasConcept C127413603 @default.
- W2807258775 hasConcept C154945302 @default.
- W2807258775 hasConcept C169258074 @default.
- W2807258775 hasConcept C192448918 @default.
- W2807258775 hasConcept C22212356 @default.
- W2807258775 hasConcept C38652104 @default.
- W2807258775 hasConcept C41008148 @default.
- W2807258775 hasConcept C47796450 @default.
- W2807258775 hasConcept C50644808 @default.
- W2807258775 hasConcept C555944384 @default.
- W2807258775 hasConcept C76155785 @default.
- W2807258775 hasConcept C79403827 @default.
- W2807258775 hasConcept C81860439 @default.
- W2807258775 hasConcept C94523657 @default.
- W2807258775 hasConcept C95623464 @default.
- W2807258775 hasConceptScore W2807258775C119857082 @default.
- W2807258775 hasConceptScore W2807258775C12267149 @default.
- W2807258775 hasConceptScore W2807258775C127413603 @default.
- W2807258775 hasConceptScore W2807258775C154945302 @default.
- W2807258775 hasConceptScore W2807258775C169258074 @default.
- W2807258775 hasConceptScore W2807258775C192448918 @default.
- W2807258775 hasConceptScore W2807258775C22212356 @default.
- W2807258775 hasConceptScore W2807258775C38652104 @default.
- W2807258775 hasConceptScore W2807258775C41008148 @default.
- W2807258775 hasConceptScore W2807258775C47796450 @default.
- W2807258775 hasConceptScore W2807258775C50644808 @default.
- W2807258775 hasConceptScore W2807258775C555944384 @default.
- W2807258775 hasConceptScore W2807258775C76155785 @default.
- W2807258775 hasConceptScore W2807258775C79403827 @default.
- W2807258775 hasConceptScore W2807258775C81860439 @default.
- W2807258775 hasConceptScore W2807258775C94523657 @default.
- W2807258775 hasConceptScore W2807258775C95623464 @default.
- W2807258775 hasLocation W28072587751 @default.
- W2807258775 hasOpenAccess W2807258775 @default.
- W2807258775 hasPrimaryLocation W28072587751 @default.
- W2807258775 hasRelatedWork W2776601773 @default.
- W2807258775 hasRelatedWork W2979979539 @default.
- W2807258775 hasRelatedWork W3004897296 @default.
- W2807258775 hasRelatedWork W3127425528 @default.
- W2807258775 hasRelatedWork W3168994312 @default.
- W2807258775 hasRelatedWork W3195168932 @default.
- W2807258775 hasRelatedWork W4205958290 @default.
- W2807258775 hasRelatedWork W4251731838 @default.
- W2807258775 hasRelatedWork W4311106074 @default.
- W2807258775 hasRelatedWork W4320483443 @default.
- W2807258775 isParatext "false" @default.
- W2807258775 isRetracted "false" @default.
- W2807258775 magId "2807258775" @default.
- W2807258775 workType "article" @default.