Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807267296> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2807267296 abstract "Road traffic snarl-up is a major issue in metropolitan area of both developing and developed countries. In order to diminish this imperative, traffic congestion states of road systems are assessed, so that congested path can be avoided and flipside path can be chosen while traveling from one place to another. Information’s are gathered by the GPS gadgets and offers new open doors for traffic and route prediction, particularly in urban city systems. The core purpose of this research work is to build up an Android application which gives a deliberate approach in providing the best route between a source and destination to the drivers so that driver will not be caught in the traffic. Android application uses Machine Learning algorithms. In this paper, Hidden Markov Model (HMM) is used for predicting traffic states which performs better and more robust than the other models. The best path from source to destination is predicted using Viterbi algorithm taking into the account of road traffic at the time and the driver will be directed to the best path. This application takes Json request as input to interface with the local server through Internet for predicting the traffic state and the best path. The output is returned back from the server as a Json response to the Android application." @default.
- W2807267296 created "2018-06-13" @default.
- W2807267296 creator A5012287845 @default.
- W2807267296 creator A5056936543 @default.
- W2807267296 creator A5079959887 @default.
- W2807267296 date "2018-01-01" @default.
- W2807267296 modified "2023-09-27" @default.
- W2807267296 title "Traffic Prediction Using Viterbi Algorithm in Machine Learning Approach" @default.
- W2807267296 cites W1506055530 @default.
- W2807267296 cites W2017759193 @default.
- W2807267296 cites W2346834901 @default.
- W2807267296 cites W2460404912 @default.
- W2807267296 cites W2469086354 @default.
- W2807267296 cites W2512956521 @default.
- W2807267296 cites W2529244931 @default.
- W2807267296 cites W2534760828 @default.
- W2807267296 doi "https://doi.org/10.1007/978-981-10-8657-1_25" @default.
- W2807267296 hasPublicationYear "2018" @default.
- W2807267296 type Work @default.
- W2807267296 sameAs 2807267296 @default.
- W2807267296 citedByCount "0" @default.
- W2807267296 crossrefType "book-chapter" @default.
- W2807267296 hasAuthorship W2807267296A5012287845 @default.
- W2807267296 hasAuthorship W2807267296A5056936543 @default.
- W2807267296 hasAuthorship W2807267296A5079959887 @default.
- W2807267296 hasConcept C111919701 @default.
- W2807267296 hasConcept C11413529 @default.
- W2807267296 hasConcept C119857082 @default.
- W2807267296 hasConcept C127413603 @default.
- W2807267296 hasConcept C136764020 @default.
- W2807267296 hasConcept C154945302 @default.
- W2807267296 hasConcept C22212356 @default.
- W2807267296 hasConcept C23224414 @default.
- W2807267296 hasConcept C2779888511 @default.
- W2807267296 hasConcept C2780416260 @default.
- W2807267296 hasConcept C31258907 @default.
- W2807267296 hasConcept C41008148 @default.
- W2807267296 hasConcept C519991488 @default.
- W2807267296 hasConcept C557433098 @default.
- W2807267296 hasConcept C60582962 @default.
- W2807267296 hasConcept C79403827 @default.
- W2807267296 hasConceptScore W2807267296C111919701 @default.
- W2807267296 hasConceptScore W2807267296C11413529 @default.
- W2807267296 hasConceptScore W2807267296C119857082 @default.
- W2807267296 hasConceptScore W2807267296C127413603 @default.
- W2807267296 hasConceptScore W2807267296C136764020 @default.
- W2807267296 hasConceptScore W2807267296C154945302 @default.
- W2807267296 hasConceptScore W2807267296C22212356 @default.
- W2807267296 hasConceptScore W2807267296C23224414 @default.
- W2807267296 hasConceptScore W2807267296C2779888511 @default.
- W2807267296 hasConceptScore W2807267296C2780416260 @default.
- W2807267296 hasConceptScore W2807267296C31258907 @default.
- W2807267296 hasConceptScore W2807267296C41008148 @default.
- W2807267296 hasConceptScore W2807267296C519991488 @default.
- W2807267296 hasConceptScore W2807267296C557433098 @default.
- W2807267296 hasConceptScore W2807267296C60582962 @default.
- W2807267296 hasConceptScore W2807267296C79403827 @default.
- W2807267296 hasLocation W28072672961 @default.
- W2807267296 hasOpenAccess W2807267296 @default.
- W2807267296 hasPrimaryLocation W28072672961 @default.
- W2807267296 hasRelatedWork W1965291704 @default.
- W2807267296 hasRelatedWork W2009315612 @default.
- W2807267296 hasRelatedWork W2284008484 @default.
- W2807267296 hasRelatedWork W2323458076 @default.
- W2807267296 hasRelatedWork W2744198018 @default.
- W2807267296 hasRelatedWork W2774603849 @default.
- W2807267296 hasRelatedWork W2775878213 @default.
- W2807267296 hasRelatedWork W2785984870 @default.
- W2807267296 hasRelatedWork W2786677948 @default.
- W2807267296 hasRelatedWork W2896198671 @default.
- W2807267296 hasRelatedWork W2903501237 @default.
- W2807267296 hasRelatedWork W2916813124 @default.
- W2807267296 hasRelatedWork W2917388040 @default.
- W2807267296 hasRelatedWork W2955233948 @default.
- W2807267296 hasRelatedWork W2966473603 @default.
- W2807267296 hasRelatedWork W2986888057 @default.
- W2807267296 hasRelatedWork W3007396810 @default.
- W2807267296 hasRelatedWork W3043756617 @default.
- W2807267296 hasRelatedWork W2616290164 @default.
- W2807267296 hasRelatedWork W3180245793 @default.
- W2807267296 isParatext "false" @default.
- W2807267296 isRetracted "false" @default.
- W2807267296 magId "2807267296" @default.
- W2807267296 workType "book-chapter" @default.