Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807289511> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2807289511 endingPage "1048" @default.
- W2807289511 startingPage "1041" @default.
- W2807289511 abstract "Abstract With exploding textual data on the internet with e-books, legal documents and products information, it is an opportunity to harness it for applications which can aid human tasks. Developing systems for question generation can be used for making frequently-asked-questions, creating school quiz-es and serve for the purpose of unified AI. Here in this study various encoder decoder architectures for generating questions from text inputs have been explored using Stanford’s SQuAD dataset as for training development and test sets and evaluation metrics such as BLEU, ROUGUE and training time were used to compare the effectiveness of the models. The article develops upon the work of current end-to-end system by using gated recurrent unit in place of long short term memory which give similar accuracy but with lesser training time, further it also show the successfully use of a convolution based encoder for this task which gives results comparable to current state of the art system with much lesser training time." @default.
- W2807289511 created "2018-06-13" @default.
- W2807289511 creator A5046414549 @default.
- W2807289511 creator A5056571102 @default.
- W2807289511 date "2018-01-01" @default.
- W2807289511 modified "2023-10-16" @default.
- W2807289511 title "Encoder-Decoder Architectures for Generating Questions" @default.
- W2807289511 cites W2064675550 @default.
- W2807289511 cites W2078549040 @default.
- W2807289511 cites W2081580037 @default.
- W2807289511 cites W2101105183 @default.
- W2807289511 cites W2108325777 @default.
- W2807289511 cites W2109609717 @default.
- W2807289511 cites W2151466713 @default.
- W2807289511 cites W2161325192 @default.
- W2807289511 cites W2250425483 @default.
- W2807289511 cites W2250539671 @default.
- W2807289511 cites W2757715585 @default.
- W2807289511 cites W4236521339 @default.
- W2807289511 doi "https://doi.org/10.1016/j.procs.2018.05.019" @default.
- W2807289511 hasPublicationYear "2018" @default.
- W2807289511 type Work @default.
- W2807289511 sameAs 2807289511 @default.
- W2807289511 citedByCount "5" @default.
- W2807289511 countsByYear W28072895112020 @default.
- W2807289511 countsByYear W28072895112022 @default.
- W2807289511 crossrefType "journal-article" @default.
- W2807289511 hasAuthorship W2807289511A5046414549 @default.
- W2807289511 hasAuthorship W2807289511A5056571102 @default.
- W2807289511 hasBestOaLocation W28072895111 @default.
- W2807289511 hasConcept C111919701 @default.
- W2807289511 hasConcept C118505674 @default.
- W2807289511 hasConcept C199360897 @default.
- W2807289511 hasConcept C41008148 @default.
- W2807289511 hasConcept C9390403 @default.
- W2807289511 hasConceptScore W2807289511C111919701 @default.
- W2807289511 hasConceptScore W2807289511C118505674 @default.
- W2807289511 hasConceptScore W2807289511C199360897 @default.
- W2807289511 hasConceptScore W2807289511C41008148 @default.
- W2807289511 hasConceptScore W2807289511C9390403 @default.
- W2807289511 hasLocation W28072895111 @default.
- W2807289511 hasOpenAccess W2807289511 @default.
- W2807289511 hasPrimaryLocation W28072895111 @default.
- W2807289511 hasRelatedWork W1527862632 @default.
- W2807289511 hasRelatedWork W1652311832 @default.
- W2807289511 hasRelatedWork W2109507516 @default.
- W2807289511 hasRelatedWork W2118300983 @default.
- W2807289511 hasRelatedWork W2135396778 @default.
- W2807289511 hasRelatedWork W2356875448 @default.
- W2807289511 hasRelatedWork W2357258777 @default.
- W2807289511 hasRelatedWork W3137189469 @default.
- W2807289511 hasRelatedWork W4235530921 @default.
- W2807289511 hasRelatedWork W4243252198 @default.
- W2807289511 hasVolume "132" @default.
- W2807289511 isParatext "false" @default.
- W2807289511 isRetracted "false" @default.
- W2807289511 magId "2807289511" @default.
- W2807289511 workType "article" @default.