Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807303927> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2807303927 endingPage "309" @default.
- W2807303927 startingPage "303" @default.
- W2807303927 abstract "Abstract. 3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching." @default.
- W2807303927 created "2018-06-13" @default.
- W2807303927 creator A5008273122 @default.
- W2807303927 creator A5052386553 @default.
- W2807303927 creator A5079207060 @default.
- W2807303927 creator A5083368958 @default.
- W2807303927 date "2018-05-28" @default.
- W2807303927 modified "2023-10-18" @default.
- W2807303927 title "DENSE MATCHING COMPARISON BETWEEN CENSUS AND A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR PLANT RECONSTRUCTION" @default.
- W2807303927 cites W1908164922 @default.
- W2807303927 cites W2017102171 @default.
- W2807303927 cites W2103584248 @default.
- W2807303927 cites W2115579991 @default.
- W2807303927 cites W2117248802 @default.
- W2807303927 cites W2121781154 @default.
- W2807303927 cites W2127589108 @default.
- W2807303927 cites W2128357735 @default.
- W2807303927 cites W2130657708 @default.
- W2807303927 cites W2143516773 @default.
- W2807303927 cites W2144354855 @default.
- W2807303927 cites W2164909551 @default.
- W2807303927 cites W2949975533 @default.
- W2807303927 doi "https://doi.org/10.5194/isprs-annals-iv-2-303-2018" @default.
- W2807303927 hasPublicationYear "2018" @default.
- W2807303927 type Work @default.
- W2807303927 sameAs 2807303927 @default.
- W2807303927 citedByCount "0" @default.
- W2807303927 crossrefType "journal-article" @default.
- W2807303927 hasAuthorship W2807303927A5008273122 @default.
- W2807303927 hasAuthorship W2807303927A5052386553 @default.
- W2807303927 hasAuthorship W2807303927A5079207060 @default.
- W2807303927 hasAuthorship W2807303927A5083368958 @default.
- W2807303927 hasBestOaLocation W28073039271 @default.
- W2807303927 hasConcept C105795698 @default.
- W2807303927 hasConcept C109950114 @default.
- W2807303927 hasConcept C11413529 @default.
- W2807303927 hasConcept C117455697 @default.
- W2807303927 hasConcept C127413603 @default.
- W2807303927 hasConcept C141379421 @default.
- W2807303927 hasConcept C146978453 @default.
- W2807303927 hasConcept C153180895 @default.
- W2807303927 hasConcept C154945302 @default.
- W2807303927 hasConcept C165064840 @default.
- W2807303927 hasConcept C204323151 @default.
- W2807303927 hasConcept C2779898584 @default.
- W2807303927 hasConcept C31972630 @default.
- W2807303927 hasConcept C33923547 @default.
- W2807303927 hasConcept C41008148 @default.
- W2807303927 hasConcept C45374587 @default.
- W2807303927 hasConcept C50644808 @default.
- W2807303927 hasConcept C61455927 @default.
- W2807303927 hasConcept C81363708 @default.
- W2807303927 hasConceptScore W2807303927C105795698 @default.
- W2807303927 hasConceptScore W2807303927C109950114 @default.
- W2807303927 hasConceptScore W2807303927C11413529 @default.
- W2807303927 hasConceptScore W2807303927C117455697 @default.
- W2807303927 hasConceptScore W2807303927C127413603 @default.
- W2807303927 hasConceptScore W2807303927C141379421 @default.
- W2807303927 hasConceptScore W2807303927C146978453 @default.
- W2807303927 hasConceptScore W2807303927C153180895 @default.
- W2807303927 hasConceptScore W2807303927C154945302 @default.
- W2807303927 hasConceptScore W2807303927C165064840 @default.
- W2807303927 hasConceptScore W2807303927C204323151 @default.
- W2807303927 hasConceptScore W2807303927C2779898584 @default.
- W2807303927 hasConceptScore W2807303927C31972630 @default.
- W2807303927 hasConceptScore W2807303927C33923547 @default.
- W2807303927 hasConceptScore W2807303927C41008148 @default.
- W2807303927 hasConceptScore W2807303927C45374587 @default.
- W2807303927 hasConceptScore W2807303927C50644808 @default.
- W2807303927 hasConceptScore W2807303927C61455927 @default.
- W2807303927 hasConceptScore W2807303927C81363708 @default.
- W2807303927 hasLocation W28073039271 @default.
- W2807303927 hasLocation W28073039272 @default.
- W2807303927 hasLocation W28073039273 @default.
- W2807303927 hasLocation W28073039274 @default.
- W2807303927 hasOpenAccess W2807303927 @default.
- W2807303927 hasPrimaryLocation W28073039271 @default.
- W2807303927 hasRelatedWork W1965833644 @default.
- W2807303927 hasRelatedWork W1995188412 @default.
- W2807303927 hasRelatedWork W2121391504 @default.
- W2807303927 hasRelatedWork W2193981117 @default.
- W2807303927 hasRelatedWork W2366393194 @default.
- W2807303927 hasRelatedWork W2391245565 @default.
- W2807303927 hasRelatedWork W2517246325 @default.
- W2807303927 hasRelatedWork W2767651786 @default.
- W2807303927 hasRelatedWork W2912288872 @default.
- W2807303927 hasRelatedWork W2938237871 @default.
- W2807303927 hasVolume "IV-2" @default.
- W2807303927 isParatext "false" @default.
- W2807303927 isRetracted "false" @default.
- W2807303927 magId "2807303927" @default.
- W2807303927 workType "article" @default.