Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807349194> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2807349194 endingPage "96" @default.
- W2807349194 startingPage "89" @default.
- W2807349194 abstract "Abstract. The localization and detailed assessment of damaged buildings after a disastrous event is of utmost importance to guide response operations, recovery tasks or for insurance purposes. Several remote sensing platforms and sensors are currently used for the manual detection of building damages. However, there is an overall interest in the use of automated methods to perform this task, regardless of the used platform. Owing to its synoptic coverage and predictable availability, satellite imagery is currently used as input for the identification of building damages by the International Charter, as well as the Copernicus Emergency Management Service for the production of damage grading and reference maps. Recently proposed methods to perform image classification of building damages rely on convolutional neural networks (CNN). These are usually trained with only satellite image samples in a binary classification problem, however the number of samples derived from these images is often limited, affecting the quality of the classification results. The use of up/down-sampling image samples during the training of a CNN, has demonstrated to improve several image recognition tasks in remote sensing. However, it is currently unclear if this multi resolution information can also be captured from images with different spatial resolutions like satellite and airborne imagery (from both manned and unmanned platforms). In this paper, a CNN framework using residual connections and dilated convolutions is used considering both manned and unmanned aerial image samples to perform the satellite image classification of building damages. Three network configurations, trained with multi-resolution image samples are compared against two benchmark networks where only satellite image samples are used. Combining feature maps generated from airborne and satellite image samples, and refining these using only the satellite image samples, improved nearly 4 % the overall satellite image classification of building damages." @default.
- W2807349194 created "2018-06-13" @default.
- W2807349194 creator A5013633154 @default.
- W2807349194 creator A5014462963 @default.
- W2807349194 creator A5036503865 @default.
- W2807349194 creator A5086428184 @default.
- W2807349194 date "2018-05-28" @default.
- W2807349194 modified "2023-10-15" @default.
- W2807349194 title "SATELLITE IMAGE CLASSIFICATION OF BUILDING DAMAGES USING AIRBORNE AND SATELLITE IMAGE SAMPLES IN A DEEP LEARNING APPROACH" @default.
- W2807349194 cites W1934410531 @default.
- W2807349194 cites W1973453805 @default.
- W2807349194 cites W1997377028 @default.
- W2807349194 cites W2015780366 @default.
- W2807349194 cites W2064864121 @default.
- W2807349194 cites W2073989960 @default.
- W2807349194 cites W2098676252 @default.
- W2807349194 cites W2184481212 @default.
- W2807349194 cites W2194775991 @default.
- W2807349194 cites W2281746805 @default.
- W2807349194 cites W2294798709 @default.
- W2807349194 cites W2333566963 @default.
- W2807349194 cites W2334736524 @default.
- W2807349194 cites W2538244214 @default.
- W2807349194 cites W2604567717 @default.
- W2807349194 cites W2619516334 @default.
- W2807349194 cites W2963153291 @default.
- W2807349194 cites W2963382180 @default.
- W2807349194 cites W3103856189 @default.
- W2807349194 doi "https://doi.org/10.5194/isprs-annals-iv-2-89-2018" @default.
- W2807349194 hasPublicationYear "2018" @default.
- W2807349194 type Work @default.
- W2807349194 sameAs 2807349194 @default.
- W2807349194 citedByCount "50" @default.
- W2807349194 countsByYear W28073491942018 @default.
- W2807349194 countsByYear W28073491942019 @default.
- W2807349194 countsByYear W28073491942020 @default.
- W2807349194 countsByYear W28073491942021 @default.
- W2807349194 countsByYear W28073491942022 @default.
- W2807349194 countsByYear W28073491942023 @default.
- W2807349194 crossrefType "journal-article" @default.
- W2807349194 hasAuthorship W2807349194A5013633154 @default.
- W2807349194 hasAuthorship W2807349194A5014462963 @default.
- W2807349194 hasAuthorship W2807349194A5036503865 @default.
- W2807349194 hasAuthorship W2807349194A5086428184 @default.
- W2807349194 hasBestOaLocation W28073491941 @default.
- W2807349194 hasConcept C108583219 @default.
- W2807349194 hasConcept C115961682 @default.
- W2807349194 hasConcept C127413603 @default.
- W2807349194 hasConcept C146978453 @default.
- W2807349194 hasConcept C154945302 @default.
- W2807349194 hasConcept C17744445 @default.
- W2807349194 hasConcept C19269812 @default.
- W2807349194 hasConcept C199539241 @default.
- W2807349194 hasConcept C205372480 @default.
- W2807349194 hasConcept C205649164 @default.
- W2807349194 hasConcept C2777381055 @default.
- W2807349194 hasConcept C2778102629 @default.
- W2807349194 hasConcept C31972630 @default.
- W2807349194 hasConcept C41008148 @default.
- W2807349194 hasConcept C62649853 @default.
- W2807349194 hasConcept C75294576 @default.
- W2807349194 hasConcept C81363708 @default.
- W2807349194 hasConceptScore W2807349194C108583219 @default.
- W2807349194 hasConceptScore W2807349194C115961682 @default.
- W2807349194 hasConceptScore W2807349194C127413603 @default.
- W2807349194 hasConceptScore W2807349194C146978453 @default.
- W2807349194 hasConceptScore W2807349194C154945302 @default.
- W2807349194 hasConceptScore W2807349194C17744445 @default.
- W2807349194 hasConceptScore W2807349194C19269812 @default.
- W2807349194 hasConceptScore W2807349194C199539241 @default.
- W2807349194 hasConceptScore W2807349194C205372480 @default.
- W2807349194 hasConceptScore W2807349194C205649164 @default.
- W2807349194 hasConceptScore W2807349194C2777381055 @default.
- W2807349194 hasConceptScore W2807349194C2778102629 @default.
- W2807349194 hasConceptScore W2807349194C31972630 @default.
- W2807349194 hasConceptScore W2807349194C41008148 @default.
- W2807349194 hasConceptScore W2807349194C62649853 @default.
- W2807349194 hasConceptScore W2807349194C75294576 @default.
- W2807349194 hasConceptScore W2807349194C81363708 @default.
- W2807349194 hasLocation W28073491941 @default.
- W2807349194 hasLocation W28073491942 @default.
- W2807349194 hasOpenAccess W2807349194 @default.
- W2807349194 hasPrimaryLocation W28073491941 @default.
- W2807349194 hasRelatedWork W2428997408 @default.
- W2807349194 hasRelatedWork W2766604260 @default.
- W2807349194 hasRelatedWork W3011074480 @default.
- W2807349194 hasRelatedWork W3018421652 @default.
- W2807349194 hasRelatedWork W3018756076 @default.
- W2807349194 hasRelatedWork W3047354113 @default.
- W2807349194 hasRelatedWork W3160711233 @default.
- W2807349194 hasRelatedWork W3189091156 @default.
- W2807349194 hasRelatedWork W4200550458 @default.
- W2807349194 hasRelatedWork W4220996320 @default.
- W2807349194 hasVolume "IV-2" @default.
- W2807349194 isParatext "false" @default.
- W2807349194 isRetracted "false" @default.
- W2807349194 magId "2807349194" @default.
- W2807349194 workType "article" @default.