Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807389917> ?p ?o ?g. }
- W2807389917 abstract "Sentiment classification typically relies on a large amount of labeled data. In practice, the availability of labels is highly imbalanced among different languages, e.g., more English texts are labeled than texts in any other languages, which creates a considerable inequality in the quality of related information services received by users speaking different languages. To tackle this problem, cross-lingual sentiment classification approaches aim to transfer knowledge learned from one language that has abundant labeled examples (i.e., the source language, usually English) to another language with fewer labels (i.e., the target language). The source and the target languages are usually bridged through off-the-shelf machine translation tools. Through such a channel, cross-language sentiment patterns can be successfully learned from English and transferred into the target languages. This approach, however, often fails to capture sentiment knowledge specific to the target language, and thus compromises the accuracy of the downstream classification task. In this paper, we employ emojis, which are widely available in many languages, as a new channel to learn both the cross-language and the language-specific sentiment patterns. We propose a novel representation learning method that uses emoji prediction as an instrument to learn respective sentiment-aware representations for each language. The learned representations are then integrated to facilitate cross-lingual sentiment classification. The proposed method demonstrates state-of-the-art performance on benchmark datasets, which is sustained even when sentiment labels are scarce." @default.
- W2807389917 created "2018-06-13" @default.
- W2807389917 creator A5031457464 @default.
- W2807389917 creator A5048955398 @default.
- W2807389917 creator A5052249316 @default.
- W2807389917 creator A5052404451 @default.
- W2807389917 creator A5060639952 @default.
- W2807389917 creator A5091003789 @default.
- W2807389917 date "2018-06-07" @default.
- W2807389917 modified "2023-09-23" @default.
- W2807389917 title "Emoji-Powered Representation Learning for Cross-Lingual Sentiment Classification" @default.
- W2807389917 cites W1495762646 @default.
- W2807389917 cites W1590495275 @default.
- W2807389917 cites W1614298861 @default.
- W2807389917 cites W1815076433 @default.
- W2807389917 cites W1853947067 @default.
- W2807389917 cites W1983286042 @default.
- W2807389917 cites W1985643839 @default.
- W2807389917 cites W1994966918 @default.
- W2807389917 cites W2012348783 @default.
- W2807389917 cites W2021097538 @default.
- W2807389917 cites W2040963510 @default.
- W2807389917 cites W2041587709 @default.
- W2807389917 cites W2064675550 @default.
- W2807389917 cites W2069143585 @default.
- W2807389917 cites W2077587655 @default.
- W2807389917 cites W2089065004 @default.
- W2807389917 cites W2108646579 @default.
- W2807389917 cites W2112251034 @default.
- W2807389917 cites W2122369144 @default.
- W2807389917 cites W2143326696 @default.
- W2807389917 cites W2143612262 @default.
- W2807389917 cites W2156876426 @default.
- W2807389917 cites W2158108973 @default.
- W2807389917 cites W2158199200 @default.
- W2807389917 cites W2159505618 @default.
- W2807389917 cites W2166706824 @default.
- W2807389917 cites W2167277498 @default.
- W2807389917 cites W2171068337 @default.
- W2807389917 cites W2171468534 @default.
- W2807389917 cites W2226734577 @default.
- W2807389917 cites W2250194349 @default.
- W2807389917 cites W2250629460 @default.
- W2807389917 cites W2250739653 @default.
- W2807389917 cites W2250904672 @default.
- W2807389917 cites W2250966211 @default.
- W2807389917 cites W2251765408 @default.
- W2807389917 cites W2251805974 @default.
- W2807389917 cites W2252153787 @default.
- W2807389917 cites W2274912527 @default.
- W2807389917 cites W2395693197 @default.
- W2807389917 cites W2402144811 @default.
- W2807389917 cites W2462290672 @default.
- W2807389917 cites W2510632587 @default.
- W2807389917 cites W2513139648 @default.
- W2807389917 cites W2514567832 @default.
- W2807389917 cites W2518630504 @default.
- W2807389917 cites W2526960150 @default.
- W2807389917 cites W2538593694 @default.
- W2807389917 cites W2548672514 @default.
- W2807389917 cites W2568148245 @default.
- W2807389917 cites W2582154088 @default.
- W2807389917 cites W2582345297 @default.
- W2807389917 cites W2597395360 @default.
- W2807389917 cites W2604944277 @default.
- W2807389917 cites W2604951800 @default.
- W2807389917 cites W2605145284 @default.
- W2807389917 cites W2611472057 @default.
- W2807389917 cites W2613577477 @default.
- W2807389917 cites W2621037547 @default.
- W2807389917 cites W2621240141 @default.
- W2807389917 cites W2735926531 @default.
- W2807389917 cites W2739774142 @default.
- W2807389917 cites W2741115544 @default.
- W2807389917 cites W2755035843 @default.
- W2807389917 cites W2755222014 @default.
- W2807389917 cites W2760656271 @default.
- W2807389917 cites W2767917127 @default.
- W2807389917 cites W2789190634 @default.
- W2807389917 cites W2791662055 @default.
- W2807389917 cites W2794607770 @default.
- W2807389917 cites W2794941713 @default.
- W2807389917 cites W2949547296 @default.
- W2807389917 cites W2963693353 @default.
- W2807389917 cites W2964121744 @default.
- W2807389917 cites W2964236337 @default.
- W2807389917 cites W2964308564 @default.
- W2807389917 cites W3105262041 @default.
- W2807389917 doi "https://doi.org/10.48550/arxiv.1806.02557" @default.
- W2807389917 hasPublicationYear "2018" @default.
- W2807389917 type Work @default.
- W2807389917 sameAs 2807389917 @default.
- W2807389917 citedByCount "0" @default.
- W2807389917 crossrefType "posted-content" @default.
- W2807389917 hasAuthorship W2807389917A5031457464 @default.
- W2807389917 hasAuthorship W2807389917A5048955398 @default.
- W2807389917 hasAuthorship W2807389917A5052249316 @default.
- W2807389917 hasAuthorship W2807389917A5052404451 @default.
- W2807389917 hasAuthorship W2807389917A5060639952 @default.
- W2807389917 hasAuthorship W2807389917A5091003789 @default.