Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807471255> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2807471255 endingPage "51" @default.
- W2807471255 startingPage "43" @default.
- W2807471255 abstract "Abstract Many thermodynamic calculations and engineering applications require the temperature-dependent heat capacity (Cp) of a material to be known a priori. First-principle calculations of heat capacities can stand in place of experimental information, but these calculations are costly and expensive. Here, we report on our creation of a high-throughput supervised machine learning-based tool to predict temperature-dependent heat capacity. We demonstrate that material heat capacity can be correlated to a number of elemental and atomic properties. The machine learning method predicts heat capacity for thousands of compounds in seconds, suggesting facile implementation into integrated computational materials engineering (ICME) processes. In this context, we consider its use to replace Neumann-Kopp predictions as a high-throughput screening tool to help identify new materials as candidates for engineering processes. Also promising is the enhanced speed and performance compared to cation/anion contribution methods at elevated temperatures as well as the ability to improve future predictions as more data are made available. This machine learning method only requires formula inputs when calculating heat capacity and can be completely automated. This is an improvement to common best-practice methods such as cation/anion contributions or mixed-oxide approaches which are limited in application to specific materials and require case-by-case considerations." @default.
- W2807471255 created "2018-06-13" @default.
- W2807471255 creator A5000231049 @default.
- W2807471255 creator A5003301534 @default.
- W2807471255 creator A5050610772 @default.
- W2807471255 creator A5056006831 @default.
- W2807471255 date "2018-05-29" @default.
- W2807471255 modified "2023-10-10" @default.
- W2807471255 title "Machine Learning Prediction of Heat Capacity for Solid Inorganics" @default.
- W2807471255 cites W1563453094 @default.
- W2807471255 cites W1998454259 @default.
- W2807471255 cites W2031563692 @default.
- W2807471255 cites W2065832194 @default.
- W2807471255 cites W2069619143 @default.
- W2807471255 cites W2092307784 @default.
- W2807471255 cites W2102636708 @default.
- W2807471255 cites W2141304294 @default.
- W2807471255 cites W2141842132 @default.
- W2807471255 cites W2331899405 @default.
- W2807471255 cites W2520500207 @default.
- W2807471255 cites W2598559427 @default.
- W2807471255 cites W2614608854 @default.
- W2807471255 cites W2771697124 @default.
- W2807471255 cites W2804765537 @default.
- W2807471255 cites W336365082 @default.
- W2807471255 doi "https://doi.org/10.1007/s40192-018-0108-9" @default.
- W2807471255 hasPublicationYear "2018" @default.
- W2807471255 type Work @default.
- W2807471255 sameAs 2807471255 @default.
- W2807471255 citedByCount "59" @default.
- W2807471255 countsByYear W28074712552018 @default.
- W2807471255 countsByYear W28074712552019 @default.
- W2807471255 countsByYear W28074712552020 @default.
- W2807471255 countsByYear W28074712552021 @default.
- W2807471255 countsByYear W28074712552022 @default.
- W2807471255 countsByYear W28074712552023 @default.
- W2807471255 crossrefType "journal-article" @default.
- W2807471255 hasAuthorship W2807471255A5000231049 @default.
- W2807471255 hasAuthorship W2807471255A5003301534 @default.
- W2807471255 hasAuthorship W2807471255A5050610772 @default.
- W2807471255 hasAuthorship W2807471255A5056006831 @default.
- W2807471255 hasBestOaLocation W28074712551 @default.
- W2807471255 hasConcept C111472728 @default.
- W2807471255 hasConcept C119857082 @default.
- W2807471255 hasConcept C121332964 @default.
- W2807471255 hasConcept C127413603 @default.
- W2807471255 hasConcept C138885662 @default.
- W2807471255 hasConcept C151730666 @default.
- W2807471255 hasConcept C154945302 @default.
- W2807471255 hasConcept C157764524 @default.
- W2807471255 hasConcept C21880701 @default.
- W2807471255 hasConcept C2779343474 @default.
- W2807471255 hasConcept C41008148 @default.
- W2807471255 hasConcept C555944384 @default.
- W2807471255 hasConcept C60205243 @default.
- W2807471255 hasConcept C75553542 @default.
- W2807471255 hasConcept C76155785 @default.
- W2807471255 hasConcept C86803240 @default.
- W2807471255 hasConcept C97355855 @default.
- W2807471255 hasConceptScore W2807471255C111472728 @default.
- W2807471255 hasConceptScore W2807471255C119857082 @default.
- W2807471255 hasConceptScore W2807471255C121332964 @default.
- W2807471255 hasConceptScore W2807471255C127413603 @default.
- W2807471255 hasConceptScore W2807471255C138885662 @default.
- W2807471255 hasConceptScore W2807471255C151730666 @default.
- W2807471255 hasConceptScore W2807471255C154945302 @default.
- W2807471255 hasConceptScore W2807471255C157764524 @default.
- W2807471255 hasConceptScore W2807471255C21880701 @default.
- W2807471255 hasConceptScore W2807471255C2779343474 @default.
- W2807471255 hasConceptScore W2807471255C41008148 @default.
- W2807471255 hasConceptScore W2807471255C555944384 @default.
- W2807471255 hasConceptScore W2807471255C60205243 @default.
- W2807471255 hasConceptScore W2807471255C75553542 @default.
- W2807471255 hasConceptScore W2807471255C76155785 @default.
- W2807471255 hasConceptScore W2807471255C86803240 @default.
- W2807471255 hasConceptScore W2807471255C97355855 @default.
- W2807471255 hasFunder F4320306076 @default.
- W2807471255 hasIssue "2" @default.
- W2807471255 hasLocation W28074712551 @default.
- W2807471255 hasOpenAccess W2807471255 @default.
- W2807471255 hasPrimaryLocation W28074712551 @default.
- W2807471255 hasRelatedWork W1576818031 @default.
- W2807471255 hasRelatedWork W2961085424 @default.
- W2807471255 hasRelatedWork W3046775127 @default.
- W2807471255 hasRelatedWork W3170094116 @default.
- W2807471255 hasRelatedWork W3209574120 @default.
- W2807471255 hasRelatedWork W4205958290 @default.
- W2807471255 hasRelatedWork W4286629047 @default.
- W2807471255 hasRelatedWork W4306321456 @default.
- W2807471255 hasRelatedWork W4306674287 @default.
- W2807471255 hasRelatedWork W4224009465 @default.
- W2807471255 hasVolume "7" @default.
- W2807471255 isParatext "false" @default.
- W2807471255 isRetracted "false" @default.
- W2807471255 magId "2807471255" @default.
- W2807471255 workType "article" @default.