Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807567802> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2807567802 endingPage "371" @default.
- W2807567802 startingPage "364" @default.
- W2807567802 abstract "Abstract Convolutional neural networks are widely used for solving image recognition and other classification problems in which the whole image is considered as a single object. In this paper, we take the pansharpening problem of remote sensing images as an example to discuss how to establish pixel-wise regression models using convolutional neural networks. In order to meet the requirements of pixel-wise analysis on both the localization accuracy and the abstraction ability of the regression process, a U-shaped architecture is applied in our study to construct the network model. By establishing direct connections between convolution layers at the front end and the back end of the network, image features corresponding to different resolution levels can be retained. Then a regression relationship between these multi-resolution image features and the target image pixel values can be obtained. Experimental results show that the proposed regression model can effectively accomplish pansharpening, with better performance in controlling geometric deformation and color distortion, as compared to some state of the art methods." @default.
- W2807567802 created "2018-06-13" @default.
- W2807567802 creator A5026300494 @default.
- W2807567802 creator A5036480915 @default.
- W2807567802 creator A5048797071 @default.
- W2807567802 creator A5088094619 @default.
- W2807567802 date "2018-10-01" @default.
- W2807567802 modified "2023-10-12" @default.
- W2807567802 title "Pixel-wise regression using U-Net and its application on pansharpening" @default.
- W2807567802 cites W130490334 @default.
- W2807567802 cites W1885185971 @default.
- W2807567802 cites W1991460509 @default.
- W2807567802 cites W2001800591 @default.
- W2807567802 cites W2010319424 @default.
- W2807567802 cites W2082232962 @default.
- W2807567802 cites W2088538848 @default.
- W2807567802 cites W2091878796 @default.
- W2807567802 cites W2101926813 @default.
- W2807567802 cites W2117539524 @default.
- W2807567802 cites W2117731089 @default.
- W2807567802 cites W2133665775 @default.
- W2807567802 cites W2137983211 @default.
- W2807567802 cites W2163677711 @default.
- W2807567802 cites W2166116275 @default.
- W2807567802 cites W2396666837 @default.
- W2807567802 cites W2412588858 @default.
- W2807567802 cites W2462592242 @default.
- W2807567802 cites W2565516711 @default.
- W2807567802 cites W2567335190 @default.
- W2807567802 cites W2592312604 @default.
- W2807567802 cites W2596339904 @default.
- W2807567802 cites W2601707599 @default.
- W2807567802 cites W2760217853 @default.
- W2807567802 cites W2774320778 @default.
- W2807567802 cites W2776695600 @default.
- W2807567802 doi "https://doi.org/10.1016/j.neucom.2018.05.103" @default.
- W2807567802 hasPublicationYear "2018" @default.
- W2807567802 type Work @default.
- W2807567802 sameAs 2807567802 @default.
- W2807567802 citedByCount "87" @default.
- W2807567802 countsByYear W28075678022019 @default.
- W2807567802 countsByYear W28075678022020 @default.
- W2807567802 countsByYear W28075678022021 @default.
- W2807567802 countsByYear W28075678022022 @default.
- W2807567802 countsByYear W28075678022023 @default.
- W2807567802 crossrefType "journal-article" @default.
- W2807567802 hasAuthorship W2807567802A5026300494 @default.
- W2807567802 hasAuthorship W2807567802A5036480915 @default.
- W2807567802 hasAuthorship W2807567802A5048797071 @default.
- W2807567802 hasAuthorship W2807567802A5088094619 @default.
- W2807567802 hasConcept C105795698 @default.
- W2807567802 hasConcept C14166107 @default.
- W2807567802 hasConcept C153180895 @default.
- W2807567802 hasConcept C154945302 @default.
- W2807567802 hasConcept C160633673 @default.
- W2807567802 hasConcept C2524010 @default.
- W2807567802 hasConcept C33923547 @default.
- W2807567802 hasConcept C41008148 @default.
- W2807567802 hasConcept C83546350 @default.
- W2807567802 hasConceptScore W2807567802C105795698 @default.
- W2807567802 hasConceptScore W2807567802C14166107 @default.
- W2807567802 hasConceptScore W2807567802C153180895 @default.
- W2807567802 hasConceptScore W2807567802C154945302 @default.
- W2807567802 hasConceptScore W2807567802C160633673 @default.
- W2807567802 hasConceptScore W2807567802C2524010 @default.
- W2807567802 hasConceptScore W2807567802C33923547 @default.
- W2807567802 hasConceptScore W2807567802C41008148 @default.
- W2807567802 hasConceptScore W2807567802C83546350 @default.
- W2807567802 hasFunder F4320321001 @default.
- W2807567802 hasFunder F4320322186 @default.
- W2807567802 hasLocation W28075678021 @default.
- W2807567802 hasOpenAccess W2807567802 @default.
- W2807567802 hasPrimaryLocation W28075678021 @default.
- W2807567802 hasRelatedWork W1965781815 @default.
- W2807567802 hasRelatedWork W2004374232 @default.
- W2807567802 hasRelatedWork W2136485282 @default.
- W2807567802 hasRelatedWork W2149249189 @default.
- W2807567802 hasRelatedWork W2269705005 @default.
- W2807567802 hasRelatedWork W2542880803 @default.
- W2807567802 hasRelatedWork W2546871836 @default.
- W2807567802 hasRelatedWork W2547748020 @default.
- W2807567802 hasRelatedWork W2918100922 @default.
- W2807567802 hasRelatedWork W3043252291 @default.
- W2807567802 hasVolume "312" @default.
- W2807567802 isParatext "false" @default.
- W2807567802 isRetracted "false" @default.
- W2807567802 magId "2807567802" @default.
- W2807567802 workType "article" @default.