Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807723753> ?p ?o ?g. }
- W2807723753 endingPage "1010" @default.
- W2807723753 startingPage "989" @default.
- W2807723753 abstract "Abstract. Sediment mass conservation is a key factor that constrains river morphodynamic processes. In most models of river morphodynamics, sediment mass conservation is described by the Exner equation, which may take various forms depending on the problem in question. One of the most widely used forms of the Exner equation is the flux-based formulation, in which the conservation of bed material is related to the stream-wise gradient of the sediment transport rate. An alternative form of the Exner equation, however, is the entrainment-based formulation, in which the conservation of bed material is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. Here we represent the flux form in terms of the local capacity sediment transport rate and the entrainment form in terms of the local capacity entrainment rate. In the flux form, sediment transport is a function of local hydraulic conditions. However, the entrainment form does not require this constraint: only the rate of entrainment into suspension is in local equilibrium with hydraulic conditions, and the sediment transport rate itself may lag in space and time behind the changing flow conditions. In modeling the fine-grained lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment (nonequilibrium) form rather than a flux (equilibrium) form, in consideration of the condition that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations have not been comprehensively studied to date. Here we study this problem by comparing the results predicted by both the flux form and the entrainment form of the Exner equation under conditions simplified from the lower Yellow River (i.e., a significant reduction of sediment supply after the closure of the Xiaolangdi Dam). We use a one-dimensional morphodynamic model and sediment transport equations specifically adapted for the lower Yellow River. We find that in a treatment of a 200 km reach using a single characteristic bed sediment size, there is little difference between the two forms since the corresponding adaptation length is relatively small. However, a consideration of sediment mixtures shows that the two forms give very different patterns of grain sorting: clear kinematic waves occur in the flux form but are diffused out in the entrainment form. Both numerical simulation and mathematical analysis show that the morphodynamic processes predicted by the entrainment form are sensitive to sediment fall velocity. We suggest that the entrainment form of the Exner equation might be required when the sorting process of fine-grained sediment is studied, especially when considering relatively short timescales." @default.
- W2807723753 created "2018-06-21" @default.
- W2807723753 creator A5000688648 @default.
- W2807723753 creator A5001576345 @default.
- W2807723753 creator A5023868197 @default.
- W2807723753 creator A5038823770 @default.
- W2807723753 creator A5040387596 @default.
- W2807723753 creator A5088484144 @default.
- W2807723753 creator A5090663581 @default.
- W2807723753 date "2018-11-06" @default.
- W2807723753 modified "2023-10-18" @default.
- W2807723753 title "Morphodynamic model of the lower Yellow River: flux or entrainment form for sediment mass conservation?" @default.
- W2807723753 cites W1525984637 @default.
- W2807723753 cites W1824058942 @default.
- W2807723753 cites W1969351487 @default.
- W2807723753 cites W1972663183 @default.
- W2807723753 cites W1975237794 @default.
- W2807723753 cites W1984671721 @default.
- W2807723753 cites W1984703909 @default.
- W2807723753 cites W1987416602 @default.
- W2807723753 cites W1996720026 @default.
- W2807723753 cites W2004729062 @default.
- W2807723753 cites W2008609512 @default.
- W2807723753 cites W2014039640 @default.
- W2807723753 cites W2014256262 @default.
- W2807723753 cites W2026841634 @default.
- W2807723753 cites W2026977256 @default.
- W2807723753 cites W2041158780 @default.
- W2807723753 cites W2042263960 @default.
- W2807723753 cites W2043057066 @default.
- W2807723753 cites W2051841674 @default.
- W2807723753 cites W2054443000 @default.
- W2807723753 cites W2055944735 @default.
- W2807723753 cites W2061324056 @default.
- W2807723753 cites W2073139541 @default.
- W2807723753 cites W2099088977 @default.
- W2807723753 cites W2106614980 @default.
- W2807723753 cites W2111457863 @default.
- W2807723753 cites W2140747300 @default.
- W2807723753 cites W2154029690 @default.
- W2807723753 cites W2157593480 @default.
- W2807723753 cites W2159138302 @default.
- W2807723753 cites W2168983267 @default.
- W2807723753 cites W2170165378 @default.
- W2807723753 cites W2178719761 @default.
- W2807723753 cites W2214163154 @default.
- W2807723753 cites W2329729976 @default.
- W2807723753 cites W2331572358 @default.
- W2807723753 cites W2410198116 @default.
- W2807723753 cites W2557512305 @default.
- W2807723753 cites W2612953262 @default.
- W2807723753 cites W2737895749 @default.
- W2807723753 cites W2743777134 @default.
- W2807723753 cites W2792067327 @default.
- W2807723753 cites W2911113675 @default.
- W2807723753 cites W4206647877 @default.
- W2807723753 cites W642499968 @default.
- W2807723753 doi "https://doi.org/10.5194/esurf-6-989-2018" @default.
- W2807723753 hasPublicationYear "2018" @default.
- W2807723753 type Work @default.
- W2807723753 sameAs 2807723753 @default.
- W2807723753 citedByCount "16" @default.
- W2807723753 countsByYear W28077237532019 @default.
- W2807723753 countsByYear W28077237532020 @default.
- W2807723753 countsByYear W28077237532021 @default.
- W2807723753 countsByYear W28077237532022 @default.
- W2807723753 crossrefType "journal-article" @default.
- W2807723753 hasAuthorship W2807723753A5000688648 @default.
- W2807723753 hasAuthorship W2807723753A5001576345 @default.
- W2807723753 hasAuthorship W2807723753A5023868197 @default.
- W2807723753 hasAuthorship W2807723753A5038823770 @default.
- W2807723753 hasAuthorship W2807723753A5040387596 @default.
- W2807723753 hasAuthorship W2807723753A5088484144 @default.
- W2807723753 hasAuthorship W2807723753A5090663581 @default.
- W2807723753 hasBestOaLocation W28077237531 @default.
- W2807723753 hasConcept C114793014 @default.
- W2807723753 hasConcept C121332964 @default.
- W2807723753 hasConcept C127313418 @default.
- W2807723753 hasConcept C135343436 @default.
- W2807723753 hasConcept C139992725 @default.
- W2807723753 hasConcept C157206272 @default.
- W2807723753 hasConcept C16156107 @default.
- W2807723753 hasConcept C178790620 @default.
- W2807723753 hasConcept C185592680 @default.
- W2807723753 hasConcept C187320778 @default.
- W2807723753 hasConcept C24890656 @default.
- W2807723753 hasConcept C2816523 @default.
- W2807723753 hasConcept C39432304 @default.
- W2807723753 hasConcept C57879066 @default.
- W2807723753 hasConcept C65589250 @default.
- W2807723753 hasConcept C68709404 @default.
- W2807723753 hasConcept C76886044 @default.
- W2807723753 hasConcept C91738503 @default.
- W2807723753 hasConceptScore W2807723753C114793014 @default.
- W2807723753 hasConceptScore W2807723753C121332964 @default.
- W2807723753 hasConceptScore W2807723753C127313418 @default.
- W2807723753 hasConceptScore W2807723753C135343436 @default.
- W2807723753 hasConceptScore W2807723753C139992725 @default.