Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807737462> ?p ?o ?g. }
- W2807737462 endingPage "2207" @default.
- W2807737462 startingPage "2193" @default.
- W2807737462 abstract "Time series has been a popular research topic over the past decade. Salient subsequences of time series that can benefit the learning task, e.g., classification or clustering, are called shapelets. Shapelet-based time series learning extracts these types of salient subsequences with highly informative features from a time series. Most existing methods for shapelet discovery must scan a large pool of candidate subsequences, which is a time-consuming process. A recent work, [1] , uses regression learning to discover shapelets in a time series; however, it only considers learning shapelets from labeled time series data. This paper proposes an Unsupervised Salient Subsequence Learning (USSL) model that discovers shapelets without the effort of labeling. We developed this new learning function by integrating the strengths of shapelet learning, shapelet regularization, spectral analysis and pseudo-label to simultaneously and automatically learn shapelets to help clustering unlabeled time series better. The optimization model is iteratively solved via a coordinate descent algorithm. Experiments show that our USSL can learn meaningful shapelets, with promising results on real-world and synthetic data that surpass current state-of-the-art unsupervised time series learning methods." @default.
- W2807737462 created "2018-06-21" @default.
- W2807737462 creator A5007475662 @default.
- W2807737462 creator A5059227406 @default.
- W2807737462 creator A5063127492 @default.
- W2807737462 creator A5074852078 @default.
- W2807737462 creator A5088171732 @default.
- W2807737462 date "2019-09-01" @default.
- W2807737462 modified "2023-10-05" @default.
- W2807737462 title "Salient Subsequence Learning for Time Series Clustering" @default.
- W2807737462 cites W1644402181 @default.
- W2807737462 cites W1789163674 @default.
- W2807737462 cites W1894414046 @default.
- W2807737462 cites W1967810897 @default.
- W2807737462 cites W1975257359 @default.
- W2807737462 cites W1978371851 @default.
- W2807737462 cites W1983193016 @default.
- W2807737462 cites W1984674851 @default.
- W2807737462 cites W1993855803 @default.
- W2807737462 cites W1994200512 @default.
- W2807737462 cites W1996978148 @default.
- W2807737462 cites W2011208599 @default.
- W2807737462 cites W2027096757 @default.
- W2807737462 cites W2029438113 @default.
- W2807737462 cites W2030863907 @default.
- W2807737462 cites W2033852356 @default.
- W2807737462 cites W2035104901 @default.
- W2807737462 cites W2037537012 @default.
- W2807737462 cites W2056935845 @default.
- W2807737462 cites W2058168013 @default.
- W2807737462 cites W2078559879 @default.
- W2807737462 cites W2079247126 @default.
- W2807737462 cites W2080501585 @default.
- W2807737462 cites W2081028405 @default.
- W2807737462 cites W2084028080 @default.
- W2807737462 cites W2084376194 @default.
- W2807737462 cites W2084616221 @default.
- W2807737462 cites W2099302229 @default.
- W2807737462 cites W2100774779 @default.
- W2807737462 cites W2110908910 @default.
- W2807737462 cites W2112056172 @default.
- W2807737462 cites W2121970368 @default.
- W2807737462 cites W2123224804 @default.
- W2807737462 cites W2123502857 @default.
- W2807737462 cites W2128873747 @default.
- W2807737462 cites W2129066856 @default.
- W2807737462 cites W2131328961 @default.
- W2807737462 cites W2132914434 @default.
- W2807737462 cites W2137596615 @default.
- W2807737462 cites W2141122175 @default.
- W2807737462 cites W2144796873 @default.
- W2807737462 cites W2148298736 @default.
- W2807737462 cites W2153338628 @default.
- W2807737462 cites W2158933803 @default.
- W2807737462 cites W2171701641 @default.
- W2807737462 cites W2400411405 @default.
- W2807737462 cites W2400798192 @default.
- W2807737462 cites W2402972623 @default.
- W2807737462 cites W2466187631 @default.
- W2807737462 cites W2532798634 @default.
- W2807737462 cites W4210371587 @default.
- W2807737462 cites W4244030505 @default.
- W2807737462 cites W4250589301 @default.
- W2807737462 doi "https://doi.org/10.1109/tpami.2018.2847699" @default.
- W2807737462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994654" @default.
- W2807737462 hasPublicationYear "2019" @default.
- W2807737462 type Work @default.
- W2807737462 sameAs 2807737462 @default.
- W2807737462 citedByCount "52" @default.
- W2807737462 countsByYear W28077374622019 @default.
- W2807737462 countsByYear W28077374622020 @default.
- W2807737462 countsByYear W28077374622021 @default.
- W2807737462 countsByYear W28077374622022 @default.
- W2807737462 countsByYear W28077374622023 @default.
- W2807737462 crossrefType "journal-article" @default.
- W2807737462 hasAuthorship W2807737462A5007475662 @default.
- W2807737462 hasAuthorship W2807737462A5059227406 @default.
- W2807737462 hasAuthorship W2807737462A5063127492 @default.
- W2807737462 hasAuthorship W2807737462A5074852078 @default.
- W2807737462 hasAuthorship W2807737462A5088171732 @default.
- W2807737462 hasConcept C119857082 @default.
- W2807737462 hasConcept C134306372 @default.
- W2807737462 hasConcept C137877099 @default.
- W2807737462 hasConcept C143724316 @default.
- W2807737462 hasConcept C151406439 @default.
- W2807737462 hasConcept C151730666 @default.
- W2807737462 hasConcept C153180895 @default.
- W2807737462 hasConcept C154945302 @default.
- W2807737462 hasConcept C157553263 @default.
- W2807737462 hasConcept C2780719617 @default.
- W2807737462 hasConcept C33923547 @default.
- W2807737462 hasConcept C34388435 @default.
- W2807737462 hasConcept C41008148 @default.
- W2807737462 hasConcept C73555534 @default.
- W2807737462 hasConcept C8038995 @default.
- W2807737462 hasConcept C86803240 @default.
- W2807737462 hasConceptScore W2807737462C119857082 @default.
- W2807737462 hasConceptScore W2807737462C134306372 @default.