Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807780860> ?p ?o ?g. }
- W2807780860 abstract "In the wake of recent advances in scientific research, personalized medicine using deep learning techniques represents a new paradigm. In this work, our goal was to establish deep learning models which distinguish responders from non-responders, and also to predict possible antidepressant treatment outcomes in major depressive disorder (MDD). To uncover relationships between the responsiveness of antidepressant treatment and biomarkers, we developed a deep learning prediction approach resulting from the analysis of genetic and clinical factors such as single nucleotide polymorphisms (SNPs), age, sex, baseline Hamilton Rating Scale for Depression score, depressive episodes, marital status, and suicide attempt status of MDD patients. The cohort consisted of 455 patients who were treated with selective serotonin reuptake inhibitors (treatment-response rate = 61.0%; remission rate = 33.0%). By using the SNP dataset that was original to a genome-wide association study, we selected ten SNPs (including ABCA13 rs4917029, BNIP3 rs9419139, CACNA1E rs704329, EXOC4 rs6978272, GRIN2B rs7954376, LHFPL3 rs4352778, NELL1 rs2139423, NUAK1 rs2956406, PREX1 rs4810894, and SLIT3 rs139863958) which were associated with antidepressant treatment response. Furthermore, we pinpointed ten SNPs (including ARNTL rs11022778, CAMK1D rs2724812, GABRB3 rs12904459, GRM8 rs35864549, NAALADL2 rs9878985, NCALD rs483986, PLA2G4A rs12046378, PROK2 rs73103153, RBFOX1 rs17134927, and ZNF536 rs77554113) in relation to remission. Then, we employed multilayer feedforward neural networks (MFNNs) containing 1–3 hidden layers and compared MFNN models with logistic regression models. Our analysis results revealed that the MFNN model with 2 hidden layers (area under the receiver operating characteristic curve (AUC) = 0.8228±0.0571; sensitivity = 0.7546±0.0619; specificity = 0.6922±0.0765) performed maximally among predictive models to infer the complex relationship between antidepressant treatment response and biomarkers. In addition, the MFNN model with 3 hidden layers (AUC = 0.8060±0.0722; sensitivity = 0.7732±0.0583; specificity = 0.6623±0.0853) achieved best among predictive models to predict remission. Our study indicates that the deep MFNN framework may provide a suitable method to establish a tool for distinguishing treatment responders from non-responders prior to antidepressant therapy." @default.
- W2807780860 created "2018-06-21" @default.
- W2807780860 creator A5011953626 @default.
- W2807780860 creator A5019551792 @default.
- W2807780860 creator A5021991264 @default.
- W2807780860 creator A5036166344 @default.
- W2807780860 creator A5051339793 @default.
- W2807780860 creator A5078614627 @default.
- W2807780860 date "2018-07-06" @default.
- W2807780860 modified "2023-10-16" @default.
- W2807780860 title "A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers" @default.
- W2807780860 cites W1558777374 @default.
- W2807780860 cites W1976634586 @default.
- W2807780860 cites W1980370678 @default.
- W2807780860 cites W1992436001 @default.
- W2807780860 cites W1994232140 @default.
- W2807780860 cites W1996495473 @default.
- W2807780860 cites W2014196816 @default.
- W2807780860 cites W2026723589 @default.
- W2807780860 cites W2037670388 @default.
- W2807780860 cites W2038263384 @default.
- W2807780860 cites W2046928718 @default.
- W2807780860 cites W2052055556 @default.
- W2807780860 cites W2056841881 @default.
- W2807780860 cites W2057828422 @default.
- W2807780860 cites W2060226539 @default.
- W2807780860 cites W2066148089 @default.
- W2807780860 cites W2072959562 @default.
- W2807780860 cites W2074495846 @default.
- W2807780860 cites W2083279600 @default.
- W2807780860 cites W2088735100 @default.
- W2807780860 cites W2093065590 @default.
- W2807780860 cites W2093362297 @default.
- W2807780860 cites W2099120666 @default.
- W2807780860 cites W2100584373 @default.
- W2807780860 cites W2105532088 @default.
- W2807780860 cites W2117684832 @default.
- W2807780860 cites W2118463637 @default.
- W2807780860 cites W2119875410 @default.
- W2807780860 cites W2129906424 @default.
- W2807780860 cites W2134766766 @default.
- W2807780860 cites W2140484686 @default.
- W2807780860 cites W2147549027 @default.
- W2807780860 cites W2156070271 @default.
- W2807780860 cites W2158299107 @default.
- W2807780860 cites W2163922914 @default.
- W2807780860 cites W2188820648 @default.
- W2807780860 cites W2246167921 @default.
- W2807780860 cites W2254875034 @default.
- W2807780860 cites W2256177433 @default.
- W2807780860 cites W2257438637 @default.
- W2807780860 cites W2264017649 @default.
- W2807780860 cites W2312185171 @default.
- W2807780860 cites W2484022772 @default.
- W2807780860 cites W2521251664 @default.
- W2807780860 cites W2529145535 @default.
- W2807780860 cites W2551007246 @default.
- W2807780860 cites W2574721333 @default.
- W2807780860 cites W2587550242 @default.
- W2807780860 cites W2599081192 @default.
- W2807780860 cites W2605379571 @default.
- W2807780860 cites W2607113351 @default.
- W2807780860 cites W2762313204 @default.
- W2807780860 cites W2763822466 @default.
- W2807780860 cites W2793038901 @default.
- W2807780860 doi "https://doi.org/10.3389/fpsyt.2018.00290" @default.
- W2807780860 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6043864" @default.
- W2807780860 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30034349" @default.
- W2807780860 hasPublicationYear "2018" @default.
- W2807780860 type Work @default.
- W2807780860 sameAs 2807780860 @default.
- W2807780860 citedByCount "105" @default.
- W2807780860 countsByYear W28077808602018 @default.
- W2807780860 countsByYear W28077808602019 @default.
- W2807780860 countsByYear W28077808602020 @default.
- W2807780860 countsByYear W28077808602021 @default.
- W2807780860 countsByYear W28077808602022 @default.
- W2807780860 countsByYear W28077808602023 @default.
- W2807780860 crossrefType "journal-article" @default.
- W2807780860 hasAuthorship W2807780860A5011953626 @default.
- W2807780860 hasAuthorship W2807780860A5019551792 @default.
- W2807780860 hasAuthorship W2807780860A5021991264 @default.
- W2807780860 hasAuthorship W2807780860A5036166344 @default.
- W2807780860 hasAuthorship W2807780860A5051339793 @default.
- W2807780860 hasAuthorship W2807780860A5078614627 @default.
- W2807780860 hasBestOaLocation W28077808601 @default.
- W2807780860 hasConcept C104317684 @default.
- W2807780860 hasConcept C106208931 @default.
- W2807780860 hasConcept C118552586 @default.
- W2807780860 hasConcept C119857082 @default.
- W2807780860 hasConcept C126322002 @default.
- W2807780860 hasConcept C135763542 @default.
- W2807780860 hasConcept C139719470 @default.
- W2807780860 hasConcept C143998085 @default.
- W2807780860 hasConcept C151956035 @default.
- W2807780860 hasConcept C153209595 @default.
- W2807780860 hasConcept C15744967 @default.
- W2807780860 hasConcept C162324750 @default.
- W2807780860 hasConcept C2776867660 @default.
- W2807780860 hasConcept C2779144063 @default.