Matches in SemOpenAlex for { <https://semopenalex.org/work/W2807874642> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2807874642 endingPage "11" @default.
- W2807874642 startingPage "1" @default.
- W2807874642 abstract "The success of e-commerce companies is becoming increasingly dependent on product recommender systems which have become powerful tools that personalize the shopping experience for users based on user interests and interactions. Most modern recommender systems concentrate on finding the relevant items for each user based on their interests only, and ignore the social interactions among users. Some recommender systems, rely on the ‘trust’ of users. However in social science, trust, as a human characteristic, is a complex concept with multiple facets which has not been fully explored in recommender systems. In this paper, to model a realistic and accurate recommender system, we address the problem of social trust modeling where trust values are shaped based users characteristics in a social network. We propose a method that can predict rating for personalized recommender systems based on similarity, centrality and social relationships. Compared with traditional collaborative filtering approaches, the advantage of the proposed mechanism is its consideration of social trust values. We use the probabilistic matrix factorization method to predict user rating for products based on user-item rating matrix. Similarity is modeled using a rating-based (i.e., Vector Space Similarity and Pearson Correlation Coefficient) and connection-based similarity measurements. Centrality metrics are quantified using degree, eigen-vector, Katz and PageRank centralities. To validate the proposed trust model, an Epinions dataset is used and the rating prediction scheme is implemented. Comprehensive analysis shows that the proposed trust model based on similarity and centrality metrics provide better rating prediction rather than using binary trust values. Based on the results, we find that the degree centrality is more effective compared to other centralities in rating prediction using the specific dataset. Also trust model based on the connection-based similarity performs better compared to the Vector Space Similarity and Pearson Correlation Coefficient similarities which are rating based. The experimental results on real-world dataset demonstrate the effectiveness of our proposed model in further improving the accuracy of rating prediction in social recommender systems." @default.
- W2807874642 created "2018-06-21" @default.
- W2807874642 creator A5048111521 @default.
- W2807874642 creator A5071436332 @default.
- W2807874642 date "2018-09-01" @default.
- W2807874642 modified "2023-10-13" @default.
- W2807874642 title "Social trust model for rating prediction in recommender systems: Effects of similarity, centrality, and social ties" @default.
- W2807874642 cites W1570159982 @default.
- W2807874642 cites W1593196131 @default.
- W2807874642 cites W2030029424 @default.
- W2807874642 cites W2040230210 @default.
- W2807874642 cites W2043403353 @default.
- W2807874642 cites W2054141820 @default.
- W2807874642 cites W2063504053 @default.
- W2807874642 cites W2081114853 @default.
- W2807874642 cites W2097726984 @default.
- W2807874642 cites W2159094788 @default.
- W2807874642 cites W3122102169 @default.
- W2807874642 doi "https://doi.org/10.1016/j.osnem.2018.05.001" @default.
- W2807874642 hasPublicationYear "2018" @default.
- W2807874642 type Work @default.
- W2807874642 sameAs 2807874642 @default.
- W2807874642 citedByCount "30" @default.
- W2807874642 countsByYear W28078746422018 @default.
- W2807874642 countsByYear W28078746422019 @default.
- W2807874642 countsByYear W28078746422020 @default.
- W2807874642 countsByYear W28078746422021 @default.
- W2807874642 countsByYear W28078746422022 @default.
- W2807874642 countsByYear W28078746422023 @default.
- W2807874642 crossrefType "journal-article" @default.
- W2807874642 hasAuthorship W2807874642A5048111521 @default.
- W2807874642 hasAuthorship W2807874642A5071436332 @default.
- W2807874642 hasConcept C103278499 @default.
- W2807874642 hasConcept C114614502 @default.
- W2807874642 hasConcept C115961682 @default.
- W2807874642 hasConcept C119857082 @default.
- W2807874642 hasConcept C121332964 @default.
- W2807874642 hasConcept C124101348 @default.
- W2807874642 hasConcept C127413603 @default.
- W2807874642 hasConcept C136764020 @default.
- W2807874642 hasConcept C146978453 @default.
- W2807874642 hasConcept C154945302 @default.
- W2807874642 hasConcept C158693339 @default.
- W2807874642 hasConcept C21569690 @default.
- W2807874642 hasConcept C23123220 @default.
- W2807874642 hasConcept C2778956030 @default.
- W2807874642 hasConcept C2779172887 @default.
- W2807874642 hasConcept C33923547 @default.
- W2807874642 hasConcept C41008148 @default.
- W2807874642 hasConcept C42355184 @default.
- W2807874642 hasConcept C4727928 @default.
- W2807874642 hasConcept C49937458 @default.
- W2807874642 hasConcept C518677369 @default.
- W2807874642 hasConcept C53811970 @default.
- W2807874642 hasConcept C557471498 @default.
- W2807874642 hasConcept C62520636 @default.
- W2807874642 hasConceptScore W2807874642C103278499 @default.
- W2807874642 hasConceptScore W2807874642C114614502 @default.
- W2807874642 hasConceptScore W2807874642C115961682 @default.
- W2807874642 hasConceptScore W2807874642C119857082 @default.
- W2807874642 hasConceptScore W2807874642C121332964 @default.
- W2807874642 hasConceptScore W2807874642C124101348 @default.
- W2807874642 hasConceptScore W2807874642C127413603 @default.
- W2807874642 hasConceptScore W2807874642C136764020 @default.
- W2807874642 hasConceptScore W2807874642C146978453 @default.
- W2807874642 hasConceptScore W2807874642C154945302 @default.
- W2807874642 hasConceptScore W2807874642C158693339 @default.
- W2807874642 hasConceptScore W2807874642C21569690 @default.
- W2807874642 hasConceptScore W2807874642C23123220 @default.
- W2807874642 hasConceptScore W2807874642C2778956030 @default.
- W2807874642 hasConceptScore W2807874642C2779172887 @default.
- W2807874642 hasConceptScore W2807874642C33923547 @default.
- W2807874642 hasConceptScore W2807874642C41008148 @default.
- W2807874642 hasConceptScore W2807874642C42355184 @default.
- W2807874642 hasConceptScore W2807874642C4727928 @default.
- W2807874642 hasConceptScore W2807874642C49937458 @default.
- W2807874642 hasConceptScore W2807874642C518677369 @default.
- W2807874642 hasConceptScore W2807874642C53811970 @default.
- W2807874642 hasConceptScore W2807874642C557471498 @default.
- W2807874642 hasConceptScore W2807874642C62520636 @default.
- W2807874642 hasLocation W28078746421 @default.
- W2807874642 hasOpenAccess W2807874642 @default.
- W2807874642 hasPrimaryLocation W28078746421 @default.
- W2807874642 hasRelatedWork W1559600655 @default.
- W2807874642 hasRelatedWork W1980378180 @default.
- W2807874642 hasRelatedWork W2135598826 @default.
- W2807874642 hasRelatedWork W2285076186 @default.
- W2807874642 hasRelatedWork W2807874642 @default.
- W2807874642 hasRelatedWork W2893387448 @default.
- W2807874642 hasRelatedWork W2903865210 @default.
- W2807874642 hasRelatedWork W2965419778 @default.
- W2807874642 hasRelatedWork W2979219289 @default.
- W2807874642 hasRelatedWork W3063395743 @default.
- W2807874642 hasVolume "7" @default.
- W2807874642 isParatext "false" @default.
- W2807874642 isRetracted "false" @default.
- W2807874642 magId "2807874642" @default.
- W2807874642 workType "article" @default.