Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808004334> ?p ?o ?g. }
- W2808004334 endingPage "150" @default.
- W2808004334 startingPage "116" @default.
- W2808004334 abstract "The newly discovered giant Dahutang W–Cu–Mo deposit in the central part of the Jiangnan Orogen hosts an estimated resource of 1.1 million tons (Mt) of WO3, plus a proven resource of 0.65 Mt Cu and 0.08 Mt Mo. The Dahutang deposit is temporally and spatially associated with the Late Mesozoic S-type granites emplaced into the Neoproterozoic Jiuling granodiorite batholith and the Shuangqiaoshan Group. Based on petrographic observations, eight hydrothermal alteration/mineralization stages have been recognized, comprising pegmatitic (Stage I), potassic alteration (Stage II), albite alteration (Stage III), greisenization and main mineralization (Stage IV), polymetallic sulfide mineralization (Stage V), late scheelite mineralization (Stage VI), carbonate alteration (Stage VII) and supergene alteration (Stage VIII). Stage IV can be further divided into the early greisenization (Stage IV-A), the main wolframite mineralization (Stage IV-B) and the main scheelite mineralization (Stage IV-C). Fluid inclusion and H–O isotope analyses on nine Stage IV to VII ore/gangue minerals (wolframite, cassiterite, scheelite, sphalerite, fluorapatite, fluorite, quartz, calcite and chlorite) suggest the presence of an early W and a late Cu–Mo ore-forming fluid system. The early ore-forming fluids belong to a medium to high temperature (200°–420 °C), low salinity H2O–NaCl–CaCl2 system. This primary magmatic-hydrothermal fluid (δ18Ofluid = 5.4 to 8.8‰ and δD = −102 to −75‰) was likely exsolved from the Late Jurassic granites at Dahutang. Wolframite and scheelite coexist closely with fluorapatite and fluorite, respectively, indicating that the volatile-rich fluids at Dahutang were also rich in tungsten, fluorine and phosphorous. Tungsten was likely transported as tungstate species (e.g., WO42− and HWO4−), oxygen fluorine complexes (e.g., [WO2F4]2−, [WO3F2]2−) and phosphorous heteropolytungstate (e.g., [P(W12O40)]3−) in the fluids. Fluorapatite and wolframite may have precipitated first when the temperature dropped from 400° to 320 °C (along with pH increase) at an estimated depth of 7.8 km. This was likely followed by the extensive scheelite mineralization (with fluorite precipitation) that formed huge disseminated/veinlet-type W orebodies when the temperature further dropped to 200 °C (along with pH increase). After the W mineralization, extensive Cu–Mo polymetallic mineralization and the associated sericite-chlorite alterations may have formed by the granite porphyry and/or muscovite granite emplacement. The late ore-forming fluids belong to a medium to high temperature (200°–360 °C), low salinity H2O–NaCl–CaCl2 system. Molybdenum was likely transported mainly as Mo complexes (e.g., H2MoO4/MoO42−), and copper as Cu–Cl complexes. Molybdenite and chalcopyrite may have begun to precipitate when the fluids ascended and the temperature dropped to 330 °C. Meteoric water incursion may have then occurred (δ18Ofluid = 1.9–6.9‰ and δD = −99 to −68‰) and further cooled the fluid system to 250 °C, forming large Cu–Mo orebodies." @default.
- W2808004334 created "2018-06-21" @default.
- W2808004334 creator A5009825595 @default.
- W2808004334 creator A5010686570 @default.
- W2808004334 creator A5018099885 @default.
- W2808004334 creator A5060844794 @default.
- W2808004334 creator A5060867056 @default.
- W2808004334 creator A5078052268 @default.
- W2808004334 creator A5078530516 @default.
- W2808004334 creator A5085709224 @default.
- W2808004334 date "2018-08-01" @default.
- W2808004334 modified "2023-10-17" @default.
- W2808004334 title "Mineral paragenesis, fluid inclusions, H–O isotopes and ore-forming processes of the giant Dahutang W–Cu–Mo deposit, South China" @default.
- W2808004334 cites W1601356762 @default.
- W2808004334 cites W1966479677 @default.
- W2808004334 cites W1967658665 @default.
- W2808004334 cites W1975551580 @default.
- W2808004334 cites W1977211014 @default.
- W2808004334 cites W1978447424 @default.
- W2808004334 cites W1987939856 @default.
- W2808004334 cites W1997251589 @default.
- W2808004334 cites W2006981888 @default.
- W2808004334 cites W2006994720 @default.
- W2808004334 cites W2008200349 @default.
- W2808004334 cites W2009592315 @default.
- W2808004334 cites W2010150634 @default.
- W2808004334 cites W2013645350 @default.
- W2808004334 cites W2013810995 @default.
- W2808004334 cites W2014502918 @default.
- W2808004334 cites W2016653852 @default.
- W2808004334 cites W2019143131 @default.
- W2808004334 cites W2025140431 @default.
- W2808004334 cites W2031554685 @default.
- W2808004334 cites W2037946460 @default.
- W2808004334 cites W2039323682 @default.
- W2808004334 cites W2042402460 @default.
- W2808004334 cites W2044537972 @default.
- W2808004334 cites W2049111683 @default.
- W2808004334 cites W2049153634 @default.
- W2808004334 cites W2054310315 @default.
- W2808004334 cites W2056504828 @default.
- W2808004334 cites W2058270920 @default.
- W2808004334 cites W2062750466 @default.
- W2808004334 cites W2063207424 @default.
- W2808004334 cites W2068202901 @default.
- W2808004334 cites W2086213893 @default.
- W2808004334 cites W2092868748 @default.
- W2808004334 cites W2093039856 @default.
- W2808004334 cites W2118015150 @default.
- W2808004334 cites W2138635386 @default.
- W2808004334 cites W2142248263 @default.
- W2808004334 cites W2145503564 @default.
- W2808004334 cites W2145890576 @default.
- W2808004334 cites W2161284837 @default.
- W2808004334 cites W2162641436 @default.
- W2808004334 cites W2168626633 @default.
- W2808004334 cites W2337745687 @default.
- W2808004334 cites W2559290812 @default.
- W2808004334 cites W2568656431 @default.
- W2808004334 cites W2780002623 @default.
- W2808004334 cites W2792739241 @default.
- W2808004334 doi "https://doi.org/10.1016/j.oregeorev.2018.06.002" @default.
- W2808004334 hasPublicationYear "2018" @default.
- W2808004334 type Work @default.
- W2808004334 sameAs 2808004334 @default.
- W2808004334 citedByCount "23" @default.
- W2808004334 countsByYear W28080043342018 @default.
- W2808004334 countsByYear W28080043342019 @default.
- W2808004334 countsByYear W28080043342020 @default.
- W2808004334 countsByYear W28080043342021 @default.
- W2808004334 countsByYear W28080043342022 @default.
- W2808004334 countsByYear W28080043342023 @default.
- W2808004334 crossrefType "journal-article" @default.
- W2808004334 hasAuthorship W2808004334A5009825595 @default.
- W2808004334 hasAuthorship W2808004334A5010686570 @default.
- W2808004334 hasAuthorship W2808004334A5018099885 @default.
- W2808004334 hasAuthorship W2808004334A5060844794 @default.
- W2808004334 hasAuthorship W2808004334A5060867056 @default.
- W2808004334 hasAuthorship W2808004334A5078052268 @default.
- W2808004334 hasAuthorship W2808004334A5078530516 @default.
- W2808004334 hasAuthorship W2808004334A5085709224 @default.
- W2808004334 hasConcept C111696902 @default.
- W2808004334 hasConcept C127313418 @default.
- W2808004334 hasConcept C151730666 @default.
- W2808004334 hasConcept C154401813 @default.
- W2808004334 hasConcept C156622251 @default.
- W2808004334 hasConcept C159390177 @default.
- W2808004334 hasConcept C159750122 @default.
- W2808004334 hasConcept C165205528 @default.
- W2808004334 hasConcept C172660882 @default.
- W2808004334 hasConcept C17409809 @default.
- W2808004334 hasConcept C178790620 @default.
- W2808004334 hasConcept C185592680 @default.
- W2808004334 hasConcept C195843664 @default.
- W2808004334 hasConcept C26687426 @default.
- W2808004334 hasConcept C2776062231 @default.
- W2808004334 hasConcept C2776152364 @default.
- W2808004334 hasConcept C2776268066 @default.