Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808006715> ?p ?o ?g. }
- W2808006715 endingPage "4487" @default.
- W2808006715 startingPage "4469" @default.
- W2808006715 abstract "Abstract. A Lagrangian particle dispersion model, the FLEXible PARTicle dispersion chemical transport model (FLEXPART CTM), is used to simulate global three-dimensional fields of trace gas abundance. These fields are constrained with surface observation data through nudging, a data assimilation method, which relaxes model fields to observed values. Such fields are of interest to a variety of applications, such as inverse modelling, satellite retrievals, radiative forcing models and estimating global growth rates of greenhouse gases. Here, we apply this method to methane using 6 million model particles filling the global model domain. For each particle, methane mass tendencies due to emissions (based on several inventories) and loss by reaction with OH, Cl and O(1D), as well as observation data nudging were calculated. Model particles were transported by mean, turbulent and convective transport driven by 1∘×1∘ ERA-Interim meteorology. Nudging is applied at 79 surface stations, which are mostly included in the World Data Centre for Greenhouse Gases (WDCGG) database or the Japan–Russia Siberian Tall Tower Inland Observation Network (JR-STATION) in Siberia. For simulations of 1 year (2013), we perform a sensitivity analysis to show how nudging settings affect modelled concentration fields. These are evaluated with a set of independent surface observations and with vertical profiles in North America from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL), and in Siberia from the Airborne Extensive Regional Observations in SIBeria (YAK-AEROSIB) and the National Institute for Environmental Studies (NIES). FLEXPART CTM results are also compared to simulations from the global Eulerian chemistry Transport Model version 5 (TM5) based on optimized fluxes. Results show that nudging strongly improves modelled methane near the surface, not only at the nudging locations but also at independent stations. Mean bias at all surface locations could be reduced from over 20 to less than 5 ppb through nudging. Near the surface, FLEXPART CTM, including nudging, appears better able to capture methane molar mixing ratios than TM5 with optimized fluxes, based on a larger bias of over 13 ppb in TM5 simulations. The vertical profiles indicate that nudging affects model methane at high altitudes, yet leads to little improvement in the model results there. Averaged from 19 aircraft profile locations in North America and Siberia, root mean square error (RMSE) changes only from 16.3 to 15.7 ppb through nudging, while the mean absolute bias increases from 5.3 to 8.2 ppb. The performance for vertical profiles is thereby similar to TM5 simulations based on TM5 optimized fluxes where we found a bias of 5 ppb and RMSE of 15.9 ppb. With this rather simple model setup, we thus provide three-dimensional methane fields suitable for use as boundary conditions in regional inverse modelling as a priori information for satellite retrievals and for more accurate estimation of mean mixing ratios and growth rates. The method is also applicable to other long-lived trace gases." @default.
- W2808006715 created "2018-06-21" @default.
- W2808006715 creator A5010632024 @default.
- W2808006715 creator A5019683475 @default.
- W2808006715 creator A5020047013 @default.
- W2808006715 creator A5025572984 @default.
- W2808006715 creator A5027270547 @default.
- W2808006715 creator A5047723373 @default.
- W2808006715 creator A5050933698 @default.
- W2808006715 creator A5059120660 @default.
- W2808006715 creator A5066007197 @default.
- W2808006715 creator A5073845462 @default.
- W2808006715 date "2018-11-08" @default.
- W2808006715 modified "2023-10-06" @default.
- W2808006715 title "Three-dimensional methane distribution simulated with FLEXPART 8-CTM-1.1 constrained with observation data" @default.
- W2808006715 cites W1505655419 @default.
- W2808006715 cites W1930957548 @default.
- W2808006715 cites W1966877204 @default.
- W2808006715 cites W1972400898 @default.
- W2808006715 cites W1974811680 @default.
- W2808006715 cites W1983086210 @default.
- W2808006715 cites W1991391147 @default.
- W2808006715 cites W1995029345 @default.
- W2808006715 cites W2000483177 @default.
- W2808006715 cites W2026785886 @default.
- W2808006715 cites W2028938077 @default.
- W2808006715 cites W2035328872 @default.
- W2808006715 cites W2061984772 @default.
- W2808006715 cites W2067875456 @default.
- W2808006715 cites W2070093285 @default.
- W2808006715 cites W2071783577 @default.
- W2808006715 cites W2071843144 @default.
- W2808006715 cites W2096187463 @default.
- W2808006715 cites W2099107062 @default.
- W2808006715 cites W2118442232 @default.
- W2808006715 cites W2134927874 @default.
- W2808006715 cites W2135419069 @default.
- W2808006715 cites W2150572267 @default.
- W2808006715 cites W2156209025 @default.
- W2808006715 cites W2166165736 @default.
- W2808006715 cites W2167000970 @default.
- W2808006715 cites W2168684237 @default.
- W2808006715 cites W2210448953 @default.
- W2808006715 cites W2550227208 @default.
- W2808006715 cites W2589458956 @default.
- W2808006715 cites W2764234172 @default.
- W2808006715 cites W2768784719 @default.
- W2808006715 doi "https://doi.org/10.5194/gmd-11-4469-2018" @default.
- W2808006715 hasPublicationYear "2018" @default.
- W2808006715 type Work @default.
- W2808006715 sameAs 2808006715 @default.
- W2808006715 citedByCount "8" @default.
- W2808006715 countsByYear W28080067152019 @default.
- W2808006715 countsByYear W28080067152021 @default.
- W2808006715 countsByYear W28080067152022 @default.
- W2808006715 countsByYear W28080067152023 @default.
- W2808006715 crossrefType "journal-article" @default.
- W2808006715 hasAuthorship W2808006715A5010632024 @default.
- W2808006715 hasAuthorship W2808006715A5019683475 @default.
- W2808006715 hasAuthorship W2808006715A5020047013 @default.
- W2808006715 hasAuthorship W2808006715A5025572984 @default.
- W2808006715 hasAuthorship W2808006715A5027270547 @default.
- W2808006715 hasAuthorship W2808006715A5047723373 @default.
- W2808006715 hasAuthorship W2808006715A5050933698 @default.
- W2808006715 hasAuthorship W2808006715A5059120660 @default.
- W2808006715 hasAuthorship W2808006715A5066007197 @default.
- W2808006715 hasAuthorship W2808006715A5073845462 @default.
- W2808006715 hasBestOaLocation W28080067151 @default.
- W2808006715 hasConcept C111368507 @default.
- W2808006715 hasConcept C127313418 @default.
- W2808006715 hasConcept C153294291 @default.
- W2808006715 hasConcept C178790620 @default.
- W2808006715 hasConcept C185592680 @default.
- W2808006715 hasConcept C205649164 @default.
- W2808006715 hasConcept C24552861 @default.
- W2808006715 hasConcept C2777517185 @default.
- W2808006715 hasConcept C2779345167 @default.
- W2808006715 hasConcept C39432304 @default.
- W2808006715 hasConcept C47737302 @default.
- W2808006715 hasConcept C516920438 @default.
- W2808006715 hasConcept C91586092 @default.
- W2808006715 hasConceptScore W2808006715C111368507 @default.
- W2808006715 hasConceptScore W2808006715C127313418 @default.
- W2808006715 hasConceptScore W2808006715C153294291 @default.
- W2808006715 hasConceptScore W2808006715C178790620 @default.
- W2808006715 hasConceptScore W2808006715C185592680 @default.
- W2808006715 hasConceptScore W2808006715C205649164 @default.
- W2808006715 hasConceptScore W2808006715C24552861 @default.
- W2808006715 hasConceptScore W2808006715C2777517185 @default.
- W2808006715 hasConceptScore W2808006715C2779345167 @default.
- W2808006715 hasConceptScore W2808006715C39432304 @default.
- W2808006715 hasConceptScore W2808006715C47737302 @default.
- W2808006715 hasConceptScore W2808006715C516920438 @default.
- W2808006715 hasConceptScore W2808006715C91586092 @default.
- W2808006715 hasIssue "11" @default.
- W2808006715 hasLocation W28080067151 @default.
- W2808006715 hasLocation W28080067152 @default.
- W2808006715 hasLocation W28080067153 @default.