Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808017561> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2808017561 abstract "Relation extraction refers to a method of efficiently identifying entities from the text and extracting semantic relations between entities. The person social relation extraction is one of the most important fields in relation extraction. A large number of techniques have been proposed on relation extraction thus far, and supervised machine learning methods are the most widely used. However, the disadvantages of supervised machine learning methods are that manually annotating training data set is costly and time-consuming, which block the improvement of the supervised relation extraction model. Aiming at the limitation, we propose a novel person social relation extraction model on both Chinese and English corpus with distant supervision. Distant supervision method can make full use of the information in the knowledge base and provide training data without manual effort. In particular, it is an effective method in the very large corpora which contains thousands of relations. In this model, we use distant supervision method to get the weak-labeled data set. Then, a supervised method is used to train a classifier, which is expect to distinguish the relation between the person entities in the input sentence. Experiment results on real-world datasets show that, our model can take advantage of all informative sentences in knowledge base and outperforms several competitive analogous methods, what's more, it does not need any human-labeled training data." @default.
- W2808017561 created "2018-06-21" @default.
- W2808017561 creator A5003129247 @default.
- W2808017561 creator A5030424204 @default.
- W2808017561 creator A5052314783 @default.
- W2808017561 creator A5087226542 @default.
- W2808017561 date "2018-04-01" @default.
- W2808017561 modified "2023-09-24" @default.
- W2808017561 title "Multi-language person social relation extraction model based on distant supervision" @default.
- W2808017561 cites W1512387364 @default.
- W2808017561 cites W2383767851 @default.
- W2808017561 cites W2612791346 @default.
- W2808017561 cites W3002472320 @default.
- W2808017561 cites W3009279458 @default.
- W2808017561 doi "https://doi.org/10.1109/icccbda.2018.8386544" @default.
- W2808017561 hasPublicationYear "2018" @default.
- W2808017561 type Work @default.
- W2808017561 sameAs 2808017561 @default.
- W2808017561 citedByCount "1" @default.
- W2808017561 countsByYear W28080175612020 @default.
- W2808017561 crossrefType "proceedings-article" @default.
- W2808017561 hasAuthorship W2808017561A5003129247 @default.
- W2808017561 hasAuthorship W2808017561A5030424204 @default.
- W2808017561 hasAuthorship W2808017561A5052314783 @default.
- W2808017561 hasAuthorship W2808017561A5087226542 @default.
- W2808017561 hasConcept C119857082 @default.
- W2808017561 hasConcept C124101348 @default.
- W2808017561 hasConcept C136389625 @default.
- W2808017561 hasConcept C153604712 @default.
- W2808017561 hasConcept C154945302 @default.
- W2808017561 hasConcept C177264268 @default.
- W2808017561 hasConcept C199360897 @default.
- W2808017561 hasConcept C204321447 @default.
- W2808017561 hasConcept C25343380 @default.
- W2808017561 hasConcept C2777530160 @default.
- W2808017561 hasConcept C41008148 @default.
- W2808017561 hasConcept C50644808 @default.
- W2808017561 hasConcept C51632099 @default.
- W2808017561 hasConcept C95623464 @default.
- W2808017561 hasConceptScore W2808017561C119857082 @default.
- W2808017561 hasConceptScore W2808017561C124101348 @default.
- W2808017561 hasConceptScore W2808017561C136389625 @default.
- W2808017561 hasConceptScore W2808017561C153604712 @default.
- W2808017561 hasConceptScore W2808017561C154945302 @default.
- W2808017561 hasConceptScore W2808017561C177264268 @default.
- W2808017561 hasConceptScore W2808017561C199360897 @default.
- W2808017561 hasConceptScore W2808017561C204321447 @default.
- W2808017561 hasConceptScore W2808017561C25343380 @default.
- W2808017561 hasConceptScore W2808017561C2777530160 @default.
- W2808017561 hasConceptScore W2808017561C41008148 @default.
- W2808017561 hasConceptScore W2808017561C50644808 @default.
- W2808017561 hasConceptScore W2808017561C51632099 @default.
- W2808017561 hasConceptScore W2808017561C95623464 @default.
- W2808017561 hasLocation W28080175611 @default.
- W2808017561 hasOpenAccess W2808017561 @default.
- W2808017561 hasPrimaryLocation W28080175611 @default.
- W2808017561 hasRelatedWork W1245373000 @default.
- W2808017561 hasRelatedWork W1495442604 @default.
- W2808017561 hasRelatedWork W1507353491 @default.
- W2808017561 hasRelatedWork W2132679783 @default.
- W2808017561 hasRelatedWork W2362665896 @default.
- W2808017561 hasRelatedWork W2466472956 @default.
- W2808017561 hasRelatedWork W2548137912 @default.
- W2808017561 hasRelatedWork W2767373106 @default.
- W2808017561 hasRelatedWork W2788031953 @default.
- W2808017561 hasRelatedWork W2893724569 @default.
- W2808017561 hasRelatedWork W2927125710 @default.
- W2808017561 hasRelatedWork W2949361302 @default.
- W2808017561 hasRelatedWork W2952623539 @default.
- W2808017561 hasRelatedWork W2982332369 @default.
- W2808017561 hasRelatedWork W3006210542 @default.
- W2808017561 hasRelatedWork W3046256143 @default.
- W2808017561 hasRelatedWork W3098611607 @default.
- W2808017561 hasRelatedWork W3116471099 @default.
- W2808017561 hasRelatedWork W3149607248 @default.
- W2808017561 hasRelatedWork W3163973837 @default.
- W2808017561 isParatext "false" @default.
- W2808017561 isRetracted "false" @default.
- W2808017561 magId "2808017561" @default.
- W2808017561 workType "article" @default.