Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808022489> ?p ?o ?g. }
- W2808022489 endingPage "129" @default.
- W2808022489 startingPage "109" @default.
- W2808022489 abstract "Summary The two-scale model for simulating carbonate acidizing has gained substantial attention recently. Five studies dealt with matching experimental data studying regular acid. Four studies considered limestone samples, while the fifth examined one dolomite core with face dissolution. The previous work only considered the pore volume (PV) to breakthrough (PVBT) to match experimental results. Researchers assumed linear kinetics for hydrochloric acid (HCl) carbonate reaction and relied on changing Carman-Kozeny exponents to match experimental data. Unlike previous studies, experiments were performed on 6-in.-long and 1.5-in.-diameter vuggy-dolomite cores at two sets of temperatures (150 and 200°F) and acid concentrations (15 and 20 wt% HCl). Computed tomography (CT) was used to scan the cores when dry, wet, and after acidizing. Porosity distribution calculated from the dry and wet scans was used to build a rectangular model with the cylindrical core inscribed inside. Nonlinear reaction kinetics were applied. The acid-reaction rate and diffusion coefficient were modified on the basis of X-ray-fluorescence (XRF) results and effluent chemical analysis. Wormhole 3D shape and experimental PVBT were used to assess the quality of model results. The tuned model was used to simulate a hypothetical 18-in. core as well as large-scale radial experiments to assess its prediction capabilities, and finally the model was used to predict the dolomite-acidizing performance under field conditions. The simulation runs emphasize that the exclusion of the wormhole shape and branching from the matching process results in an unrealistic match. It is important to simulate the cylindrical shape of the core using the actual porosity distribution to capture the wormhole growth, which is increasingly important when the wormhole propagates near the core perimeter. The present study highlights that matching parameters using experimental data yields a trustworthy model that matches both PVBT and wormhole spatial propagation. Accordingly, there is no need for excessively changing the Carman-Kozeny correlation exponents to match the dolomite-acidizing experiments. The current model accurately matches the wormhole propagation inside the core along with the PVBT. This model can be tuned using a few acidizing experiments and then can be used to generate an acid-efficiency curve with a high degree of confidence, thus avoiding the extra experimental cost. The current model was able to match two sets of experiments and follow the experimental trend of longer cores and large-scale radial experiments. It was used to predict acid performance under field conditions. The results show that the optimal PVBT under field conditions is always lower than the one predicted under laboratory conditions; the acid depth of penetration has a significant effect on the acid-efficiency curves; and the vertical flow of acid should be considered in acid-job design." @default.
- W2808022489 created "2018-06-21" @default.
- W2808022489 creator A5035363249 @default.
- W2808022489 creator A5079853703 @default.
- W2808022489 date "2018-06-15" @default.
- W2808022489 modified "2023-09-30" @default.
- W2808022489 title "A Robust Model To Simulate Dolomite-Matrix Acidizing" @default.
- W2808022489 cites W1788555800 @default.
- W2808022489 cites W1967327961 @default.
- W2808022489 cites W1968359425 @default.
- W2808022489 cites W1968625355 @default.
- W2808022489 cites W1968803094 @default.
- W2808022489 cites W1973351531 @default.
- W2808022489 cites W1978567419 @default.
- W2808022489 cites W1980661532 @default.
- W2808022489 cites W1988538033 @default.
- W2808022489 cites W1997680353 @default.
- W2808022489 cites W1999238469 @default.
- W2808022489 cites W2000329342 @default.
- W2808022489 cites W2005494600 @default.
- W2808022489 cites W2008292045 @default.
- W2808022489 cites W2010809101 @default.
- W2808022489 cites W2011404886 @default.
- W2808022489 cites W2011449123 @default.
- W2808022489 cites W2013247756 @default.
- W2808022489 cites W2013550668 @default.
- W2808022489 cites W2014683409 @default.
- W2808022489 cites W2015482812 @default.
- W2808022489 cites W2018791581 @default.
- W2808022489 cites W2022905963 @default.
- W2808022489 cites W2026604099 @default.
- W2808022489 cites W2028853678 @default.
- W2808022489 cites W2033362515 @default.
- W2808022489 cites W2039203879 @default.
- W2808022489 cites W2042667637 @default.
- W2808022489 cites W2045276191 @default.
- W2808022489 cites W2046699786 @default.
- W2808022489 cites W2062198682 @default.
- W2808022489 cites W2065142096 @default.
- W2808022489 cites W2065384567 @default.
- W2808022489 cites W2066230814 @default.
- W2808022489 cites W2067279056 @default.
- W2808022489 cites W2068362857 @default.
- W2808022489 cites W2074983047 @default.
- W2808022489 cites W2083749173 @default.
- W2808022489 cites W2087147430 @default.
- W2808022489 cites W2088982940 @default.
- W2808022489 cites W2097911916 @default.
- W2808022489 cites W2121920631 @default.
- W2808022489 cites W2289306724 @default.
- W2808022489 cites W2318199563 @default.
- W2808022489 cites W2507637285 @default.
- W2808022489 cites W2511610274 @default.
- W2808022489 cites W2599362649 @default.
- W2808022489 cites W2760907354 @default.
- W2808022489 cites W2761132115 @default.
- W2808022489 cites W2762770566 @default.
- W2808022489 cites W593913196 @default.
- W2808022489 cites W2080930045 @default.
- W2808022489 doi "https://doi.org/10.2118/191136-pa" @default.
- W2808022489 hasPublicationYear "2018" @default.
- W2808022489 type Work @default.
- W2808022489 sameAs 2808022489 @default.
- W2808022489 citedByCount "7" @default.
- W2808022489 countsByYear W28080224892018 @default.
- W2808022489 countsByYear W28080224892019 @default.
- W2808022489 countsByYear W28080224892020 @default.
- W2808022489 countsByYear W28080224892021 @default.
- W2808022489 countsByYear W28080224892023 @default.
- W2808022489 crossrefType "journal-article" @default.
- W2808022489 hasAuthorship W2808022489A5035363249 @default.
- W2808022489 hasAuthorship W2808022489A5079853703 @default.
- W2808022489 hasConcept C121332964 @default.
- W2808022489 hasConcept C127313418 @default.
- W2808022489 hasConcept C127413603 @default.
- W2808022489 hasConcept C159985019 @default.
- W2808022489 hasConcept C185592680 @default.
- W2808022489 hasConcept C191897082 @default.
- W2808022489 hasConcept C192562407 @default.
- W2808022489 hasConcept C199289684 @default.
- W2808022489 hasConcept C2780181037 @default.
- W2808022489 hasConcept C2780659211 @default.
- W2808022489 hasConcept C42360764 @default.
- W2808022489 hasConcept C57879066 @default.
- W2808022489 hasConcept C6648577 @default.
- W2808022489 hasConcept C88380143 @default.
- W2808022489 hasConceptScore W2808022489C121332964 @default.
- W2808022489 hasConceptScore W2808022489C127313418 @default.
- W2808022489 hasConceptScore W2808022489C127413603 @default.
- W2808022489 hasConceptScore W2808022489C159985019 @default.
- W2808022489 hasConceptScore W2808022489C185592680 @default.
- W2808022489 hasConceptScore W2808022489C191897082 @default.
- W2808022489 hasConceptScore W2808022489C192562407 @default.
- W2808022489 hasConceptScore W2808022489C199289684 @default.
- W2808022489 hasConceptScore W2808022489C2780181037 @default.
- W2808022489 hasConceptScore W2808022489C2780659211 @default.
- W2808022489 hasConceptScore W2808022489C42360764 @default.
- W2808022489 hasConceptScore W2808022489C57879066 @default.