Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808059896> ?p ?o ?g. }
- W2808059896 endingPage "1074" @default.
- W2808059896 startingPage "1062" @default.
- W2808059896 abstract "One of the current issues in brain-computer interface (BCI) is how to deal with noisy electroencephalography (EEG) measurements organized as multidimensional datasets (tensors). On the other hand, recently, significant advances have been made in multidimensional signal completion algorithms that exploit tensor decomposition models to capture the intricate relationship among entries in a multidimensional signal. We propose to use tensor completion applied to EEG data for improving the classification performance in a motor imagery BCI system with corrupted measurements. Noisy measurements (electrode misconnections, subject movements, etc.) are considered as unknowns (missing samples) that are inferred from a tensor decomposition model (tensor completion). We evaluate the performance of four recently proposed tensor completion algorithms, CP-WOPT (Acar et al. Chemom Intell Lab Syst. 106:41-56, 2011), 3DPB-TC (Caiafa et al. 2013), BCPF (Zhao et al. IEEE Trans Pattern Anal Mach Intell. 37(9):1751-1763, 2015), and HaLRT (Liu et al. IEEE Trans Pattern Anal Mach Intell. 35(1):208-220, 2013), plus a simple interpolation strategy, first with random missing entries and then with missing samples constrained to have a specific structure (random missing channels), which is a more realistic assumption in BCI applications. We measured the ability of these algorithms to reconstruct the tensor from observed data. Then, we tested the classification accuracy of imagined movement in a BCI experiment with missing samples. We show that for random missing entries, all tensor completion algorithms can recover missing samples increasing the classification performance compared to a simple interpolation approach. For the random missing channels case, we show that tensor completion algorithms help to reconstruct missing channels, significantly improving the accuracy in the classification of motor imagery (MI), however, not at the same level as clean data. Summarizing, compared to the interpolation case, all tensor completion algorithms succeed to increase the classification performance by 7–9% (LDA–SVD) for random missing entries and 15–8% (LDA–SVD) for random missing channels. Tensor completion algorithms are useful in real BCI applications. The proposed strategy could allow using motor imagery BCI systems even when EEG data is highly affected by missing channels and/or samples, avoiding the need of new acquisitions in the calibration stage." @default.
- W2808059896 created "2018-06-21" @default.
- W2808059896 creator A5024870237 @default.
- W2808059896 creator A5047547132 @default.
- W2808059896 creator A5083182987 @default.
- W2808059896 creator A5088107746 @default.
- W2808059896 date "2018-07-03" @default.
- W2808059896 modified "2023-10-17" @default.
- W2808059896 title "Brain-Computer Interface with Corrupted EEG Data: a Tensor Completion Approach" @default.
- W2808059896 cites W1568416770 @default.
- W2808059896 cites W1588997209 @default.
- W2808059896 cites W1765998458 @default.
- W2808059896 cites W1814521481 @default.
- W2808059896 cites W1968154520 @default.
- W2808059896 cites W1981180290 @default.
- W2808059896 cites W2005521760 @default.
- W2808059896 cites W2011710850 @default.
- W2808059896 cites W2012993152 @default.
- W2808059896 cites W2023869733 @default.
- W2808059896 cites W2026352631 @default.
- W2808059896 cites W2030928609 @default.
- W2808059896 cites W2031937556 @default.
- W2808059896 cites W2038891887 @default.
- W2808059896 cites W2047145476 @default.
- W2808059896 cites W2060549341 @default.
- W2808059896 cites W2065389214 @default.
- W2808059896 cites W2066792693 @default.
- W2808059896 cites W2075647286 @default.
- W2808059896 cites W2081962379 @default.
- W2808059896 cites W2091449379 @default.
- W2808059896 cites W2103972604 @default.
- W2808059896 cites W2114122776 @default.
- W2808059896 cites W2116500643 @default.
- W2808059896 cites W2119412403 @default.
- W2808059896 cites W2128909182 @default.
- W2808059896 cites W2130286991 @default.
- W2808059896 cites W2138964882 @default.
- W2808059896 cites W2142280324 @default.
- W2808059896 cites W2145302786 @default.
- W2808059896 cites W2145583813 @default.
- W2808059896 cites W2146496894 @default.
- W2808059896 cites W2147512299 @default.
- W2808059896 cites W2157784216 @default.
- W2808059896 cites W2240753140 @default.
- W2808059896 cites W2395623988 @default.
- W2808059896 cites W2507336244 @default.
- W2808059896 cites W2521192355 @default.
- W2808059896 cites W2562701284 @default.
- W2808059896 cites W2624540538 @default.
- W2808059896 cites W2741761309 @default.
- W2808059896 cites W2742653678 @default.
- W2808059896 cites W4235713725 @default.
- W2808059896 cites W4250955649 @default.
- W2808059896 cites W4292363360 @default.
- W2808059896 cites W53172824 @default.
- W2808059896 doi "https://doi.org/10.1007/s12559-018-9574-9" @default.
- W2808059896 hasPublicationYear "2018" @default.
- W2808059896 type Work @default.
- W2808059896 sameAs 2808059896 @default.
- W2808059896 citedByCount "28" @default.
- W2808059896 countsByYear W28080598962018 @default.
- W2808059896 countsByYear W28080598962019 @default.
- W2808059896 countsByYear W28080598962020 @default.
- W2808059896 countsByYear W28080598962021 @default.
- W2808059896 countsByYear W28080598962022 @default.
- W2808059896 countsByYear W28080598962023 @default.
- W2808059896 crossrefType "journal-article" @default.
- W2808059896 hasAuthorship W2808059896A5024870237 @default.
- W2808059896 hasAuthorship W2808059896A5047547132 @default.
- W2808059896 hasAuthorship W2808059896A5083182987 @default.
- W2808059896 hasAuthorship W2808059896A5088107746 @default.
- W2808059896 hasBestOaLocation W28080598962 @default.
- W2808059896 hasConcept C113843644 @default.
- W2808059896 hasConcept C11413529 @default.
- W2808059896 hasConcept C115961682 @default.
- W2808059896 hasConcept C118552586 @default.
- W2808059896 hasConcept C119857082 @default.
- W2808059896 hasConcept C129307140 @default.
- W2808059896 hasConcept C137800194 @default.
- W2808059896 hasConcept C153180895 @default.
- W2808059896 hasConcept C154945302 @default.
- W2808059896 hasConcept C155281189 @default.
- W2808059896 hasConcept C15744967 @default.
- W2808059896 hasConcept C157915830 @default.
- W2808059896 hasConcept C169258074 @default.
- W2808059896 hasConcept C173201364 @default.
- W2808059896 hasConcept C173608175 @default.
- W2808059896 hasConcept C199360897 @default.
- W2808059896 hasConcept C202444582 @default.
- W2808059896 hasConcept C2779843651 @default.
- W2808059896 hasConcept C33923547 @default.
- W2808059896 hasConcept C41008148 @default.
- W2808059896 hasConcept C522805319 @default.
- W2808059896 hasConcept C9357733 @default.
- W2808059896 hasConceptScore W2808059896C113843644 @default.
- W2808059896 hasConceptScore W2808059896C11413529 @default.
- W2808059896 hasConceptScore W2808059896C115961682 @default.
- W2808059896 hasConceptScore W2808059896C118552586 @default.