Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808060919> ?p ?o ?g. }
- W2808060919 endingPage "1690" @default.
- W2808060919 startingPage "1681" @default.
- W2808060919 abstract "As one of the most fundamental processes, excited-state proton transfer (ESPT) plays a major role in both chemical and biological systems. In the past several decades, experimental and theoretical studies on ESPT systems have attracted considerable attention because of their tremendous potential in fluorescent probes, biological imaging, white-light-emitting materials, and organic optoelectronic materials. ESPT is related to fluorescence properties and usually occurs on an ultrafast time scale at or below 100 fs. Consequently, steady-state and femtosecond time-resolved absorption, fluorescence, and vibrational spectra have been used to explore the mechanism of ESPT. However, based on previous experimental studies, direct information, such as transition state geometries, energy barrier, and potential energy surface (PES) of the ESPT reaction, is difficult to obtain. These data are important for unravelling the detailed mechanism of ESPT reaction and can be obtained from state-of-the-art ab initio excited-state calculations. In recent years, an increasing number of experimental and theoretical studies on the detailed mechanism of ESPT systems have led to tremendous progress. This Account presents the recent advances in theoretical studies, mainly those from our group. We focus on the cases where the theoretical studies are of great importance and indispensable, such as resolving the debate on the stepwise and concerted mechanism of excited-state double proton transfer (ESDPT), revealing the sensing mechanism of ESPT chemosensors, illustrating the effect of intermolecular hydrogen bonding on the excited-state intramolecular proton transfer (ESIPT) reaction, investigating the fluorescence quenching mechanism of ESPT systems by twisting process, and determining the size of the solute·(solvent) n cluster for the solvent-assisted ESPT reaction. Through calculation of vertical excitation energies, optimization of excited-state geometries, and construction of PES of the ESPT reactions, we provide modifications to experimentally proposed mechanisms or completely new mechanism. Our proposed new and inspirational mechanisms based on theoretical studies can successfully explain the previous experimental results; some of the mechanisms have been further confirmed by experimental studies and provided guidance for researchers to design new ESPT chemosensors. Determination of the energy barrier from an accurate PES is the key to explore the ESPT mechanism with theoretical methods. This approach becomes complicated when the charge transfer state is involved for time-dependent density functional theory (TDDFT) method and optimally tuned range-separated TDDFT provides an alternative way. To unveil the driving force of ESPT reaction, the excited-state molecular dynamics combined with the intrinsic reaction coordinate calculations can be employed. These advanced approaches should be used for further studies on ESPT systems." @default.
- W2808060919 created "2018-06-21" @default.
- W2808060919 creator A5031171238 @default.
- W2808060919 creator A5087197441 @default.
- W2808060919 date "2018-06-15" @default.
- W2808060919 modified "2023-10-12" @default.
- W2808060919 title "Unraveling the Detailed Mechanism of Excited-State Proton Transfer" @default.
- W2808060919 cites W1970091304 @default.
- W2808060919 cites W1973435926 @default.
- W2808060919 cites W1976547081 @default.
- W2808060919 cites W1977521201 @default.
- W2808060919 cites W1981530332 @default.
- W2808060919 cites W1981768748 @default.
- W2808060919 cites W1989274860 @default.
- W2808060919 cites W1999602233 @default.
- W2808060919 cites W2001602097 @default.
- W2808060919 cites W2006108996 @default.
- W2808060919 cites W2007379269 @default.
- W2808060919 cites W2008597514 @default.
- W2808060919 cites W2010772236 @default.
- W2808060919 cites W2014220652 @default.
- W2808060919 cites W2014966337 @default.
- W2808060919 cites W2019692171 @default.
- W2808060919 cites W2020739016 @default.
- W2808060919 cites W2021792392 @default.
- W2808060919 cites W2026121709 @default.
- W2808060919 cites W2028751304 @default.
- W2808060919 cites W2039833414 @default.
- W2808060919 cites W2043065749 @default.
- W2808060919 cites W2045835822 @default.
- W2808060919 cites W2048058075 @default.
- W2808060919 cites W2051769308 @default.
- W2808060919 cites W2053240727 @default.
- W2808060919 cites W2060456788 @default.
- W2808060919 cites W2064082245 @default.
- W2808060919 cites W2065267333 @default.
- W2808060919 cites W2069288752 @default.
- W2808060919 cites W2078687035 @default.
- W2808060919 cites W2082249172 @default.
- W2808060919 cites W2103084330 @default.
- W2808060919 cites W2103295820 @default.
- W2808060919 cites W2107793532 @default.
- W2808060919 cites W2108612314 @default.
- W2808060919 cites W2112877182 @default.
- W2808060919 cites W2113018874 @default.
- W2808060919 cites W2130955548 @default.
- W2808060919 cites W2144534779 @default.
- W2808060919 cites W2279711335 @default.
- W2808060919 cites W2323998129 @default.
- W2808060919 cites W2329446992 @default.
- W2808060919 cites W2332585140 @default.
- W2808060919 cites W2335995906 @default.
- W2808060919 cites W2342468509 @default.
- W2808060919 cites W2358996059 @default.
- W2808060919 cites W2492255147 @default.
- W2808060919 cites W2507999782 @default.
- W2808060919 cites W2509641532 @default.
- W2808060919 cites W2519922581 @default.
- W2808060919 cites W2605886468 @default.
- W2808060919 cites W2606052168 @default.
- W2808060919 cites W2704437369 @default.
- W2808060919 cites W2727412327 @default.
- W2808060919 cites W2770858090 @default.
- W2808060919 cites W2777350705 @default.
- W2808060919 cites W2779901845 @default.
- W2808060919 cites W2782476575 @default.
- W2808060919 cites W2787810080 @default.
- W2808060919 cites W2788892491 @default.
- W2808060919 cites W2792300041 @default.
- W2808060919 cites W2793160457 @default.
- W2808060919 cites W2793339847 @default.
- W2808060919 doi "https://doi.org/10.1021/acs.accounts.8b00172" @default.
- W2808060919 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29906102" @default.
- W2808060919 hasPublicationYear "2018" @default.
- W2808060919 type Work @default.
- W2808060919 sameAs 2808060919 @default.
- W2808060919 citedByCount "394" @default.
- W2808060919 countsByYear W28080609192018 @default.
- W2808060919 countsByYear W28080609192019 @default.
- W2808060919 countsByYear W28080609192020 @default.
- W2808060919 countsByYear W28080609192021 @default.
- W2808060919 countsByYear W28080609192022 @default.
- W2808060919 countsByYear W28080609192023 @default.
- W2808060919 crossrefType "journal-article" @default.
- W2808060919 hasAuthorship W2808060919A5031171238 @default.
- W2808060919 hasAuthorship W2808060919A5087197441 @default.
- W2808060919 hasConcept C120665830 @default.
- W2808060919 hasConcept C121332964 @default.
- W2808060919 hasConcept C121745418 @default.
- W2808060919 hasConcept C125277925 @default.
- W2808060919 hasConcept C159467904 @default.
- W2808060919 hasConcept C166950319 @default.
- W2808060919 hasConcept C167735695 @default.
- W2808060919 hasConcept C178790620 @default.
- W2808060919 hasConcept C181500209 @default.
- W2808060919 hasConcept C184779094 @default.
- W2808060919 hasConcept C185592680 @default.
- W2808060919 hasConcept C2781442258 @default.