Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808076508> ?p ?o ?g. }
- W2808076508 endingPage "428" @default.
- W2808076508 startingPage "397" @default.
- W2808076508 abstract "We formulate and study dynamics from a complex Ginzburg–Landau system with saturable nonlinearity, including asymmetric cross-phase modulation (XPM) parameters. Such equations can model phenomena described by complex Ginzburg–Landau systems under the added assumption of saturable media. When the saturation parameter is set to zero, we recover a general complex cubic Ginzburg–Landau system with XPM. We first derive conditions for the existence of bounded dynamics, approximating the absorbing set for solutions. We use this to then determine conditions for amplitude death of a single wavefunction. We also construct exact plane wave solutions, and determine conditions for their modulational instability. In a degenerate limit where dispersion and nonlinearity balance, we reduce our system to a saturable nonlinear Schrödinger system with XPM parameters, and we demonstrate the existence and behavior of spatially heterogeneous stationary solutions in this limit. Using numerical simulations we verify the aforementioned analytical results, while also demonstrating other interesting emergent features of the dynamics, such as spatiotemporal chaos in the presence of modulational instability. In other regimes, coherent patterns including uniform states or banded structures arise, corresponding to certain stable stationary states. For sufficiently large yet equal XPM parameters, we observe a segregation of wavefunctions into different regions of the spatial domain, while when XPM parameters are large and take different values, one wavefunction may decay to zero in finite time over the spatial domain (in agreement with the amplitude death predicted analytically). We also find a collection of transient features, including transient defects and what appear to be rogue waves, while in two spatial dimensions we observe highly localized pattern formation. While saturation will often regularize the dynamics, such transient dynamics can still be observed – and in some cases even prolonged – as the saturability of the media is increased, as the saturation may act to slow the timescale." @default.
- W2808076508 created "2018-06-21" @default.
- W2808076508 creator A5030244539 @default.
- W2808076508 creator A5043154715 @default.
- W2808076508 creator A5056297542 @default.
- W2808076508 creator A5076484448 @default.
- W2808076508 date "2018-09-01" @default.
- W2808076508 modified "2023-10-15" @default.
- W2808076508 title "Coupled complex Ginzburg–Landau systems with saturable nonlinearity and asymmetric cross-phase modulation" @default.
- W2808076508 cites W118467577 @default.
- W2808076508 cites W1613645249 @default.
- W2808076508 cites W1614209628 @default.
- W2808076508 cites W1614413256 @default.
- W2808076508 cites W1901718249 @default.
- W2808076508 cites W1964053774 @default.
- W2808076508 cites W1964611394 @default.
- W2808076508 cites W1965181545 @default.
- W2808076508 cites W1967687437 @default.
- W2808076508 cites W1969199948 @default.
- W2808076508 cites W1970804554 @default.
- W2808076508 cites W1977088526 @default.
- W2808076508 cites W1982614886 @default.
- W2808076508 cites W1985503340 @default.
- W2808076508 cites W1987365277 @default.
- W2808076508 cites W1987873981 @default.
- W2808076508 cites W1989474576 @default.
- W2808076508 cites W1991216827 @default.
- W2808076508 cites W1991270666 @default.
- W2808076508 cites W1992079361 @default.
- W2808076508 cites W1993177683 @default.
- W2808076508 cites W1993957475 @default.
- W2808076508 cites W1996894885 @default.
- W2808076508 cites W1998338501 @default.
- W2808076508 cites W1999656948 @default.
- W2808076508 cites W2002002472 @default.
- W2808076508 cites W2002094651 @default.
- W2808076508 cites W2002213360 @default.
- W2808076508 cites W2003174840 @default.
- W2808076508 cites W2004396293 @default.
- W2808076508 cites W2014943540 @default.
- W2808076508 cites W2020758749 @default.
- W2808076508 cites W2022845446 @default.
- W2808076508 cites W2024798266 @default.
- W2808076508 cites W2027613632 @default.
- W2808076508 cites W2031949672 @default.
- W2808076508 cites W2033516009 @default.
- W2808076508 cites W2036037377 @default.
- W2808076508 cites W2037571517 @default.
- W2808076508 cites W2038082565 @default.
- W2808076508 cites W2041548885 @default.
- W2808076508 cites W2042113850 @default.
- W2808076508 cites W2043546266 @default.
- W2808076508 cites W2044092041 @default.
- W2808076508 cites W2044889482 @default.
- W2808076508 cites W2049062533 @default.
- W2808076508 cites W2050996578 @default.
- W2808076508 cites W2051719056 @default.
- W2808076508 cites W2055296676 @default.
- W2808076508 cites W2057093360 @default.
- W2808076508 cites W2057364257 @default.
- W2808076508 cites W2057567427 @default.
- W2808076508 cites W2058828300 @default.
- W2808076508 cites W2059624185 @default.
- W2808076508 cites W2065198439 @default.
- W2808076508 cites W2069478901 @default.
- W2808076508 cites W2069577083 @default.
- W2808076508 cites W2075458136 @default.
- W2808076508 cites W2076585865 @default.
- W2808076508 cites W2076612202 @default.
- W2808076508 cites W2078383927 @default.
- W2808076508 cites W2079714829 @default.
- W2808076508 cites W2080684422 @default.
- W2808076508 cites W2088273751 @default.
- W2808076508 cites W2102574271 @default.
- W2808076508 cites W2115144290 @default.
- W2808076508 cites W2116376797 @default.
- W2808076508 cites W2118200306 @default.
- W2808076508 cites W2120967793 @default.
- W2808076508 cites W2127803568 @default.
- W2808076508 cites W2132540779 @default.
- W2808076508 cites W2142844125 @default.
- W2808076508 cites W2143517089 @default.
- W2808076508 cites W2148249684 @default.
- W2808076508 cites W2158769900 @default.
- W2808076508 cites W2162193772 @default.
- W2808076508 cites W2169723574 @default.
- W2808076508 cites W2224239077 @default.
- W2808076508 cites W2426430317 @default.
- W2808076508 cites W2542353965 @default.
- W2808076508 cites W2603373596 @default.
- W2808076508 cites W2715146084 @default.
- W2808076508 cites W2767760209 @default.
- W2808076508 cites W2770058002 @default.
- W2808076508 cites W2807129698 @default.
- W2808076508 cites W2963308921 @default.
- W2808076508 cites W2963857815 @default.
- W2808076508 cites W3105337965 @default.
- W2808076508 cites W3105803122 @default.