Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808077846> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2808077846 abstract "The detection and identification of humans and concealed objects by through wall radars is affected by wall propagation effects such as attenuation and multipath. Several works, in the past, have provided solutions for mitigating wall effects based on either prior information of the wall parameters or signal processing solutions for separating wall interference from the direct signal from the target to the radar. In this paper, we propose a machine learning based method-denoising autoencoders-to mitigate wall interference effects and for reconstructing an image resembling the ground truth in free space conditions. This method relies on training the algorithm to denoise corrupted through-wall radar images into clean line-of-sight images. We have demonstrated the effectiveness of the proposed solution using simulated narrowband Doppler-Azimuth images in free space and through-wall conditions. We simulated the propagation through diverse wall conditions using stochastic finite difference time domain techniques. Next, we tested the algorithm on measured frontal (Azimuth-Elevation) images obtained from Walabot — a wideband, low power, radar with a planar antenna array. Both the measurement and simulation results showed a low error between the denoised reconstructed images and the clean line-of-sight images." @default.
- W2808077846 created "2018-06-21" @default.
- W2808077846 creator A5013341342 @default.
- W2808077846 creator A5016832424 @default.
- W2808077846 creator A5020310463 @default.
- W2808077846 creator A5042432973 @default.
- W2808077846 creator A5084624726 @default.
- W2808077846 date "2018-04-01" @default.
- W2808077846 modified "2023-09-23" @default.
- W2808077846 title "Mitigation of through-wall interference in radar images using denoising autoencoders" @default.
- W2808077846 cites W1967040897 @default.
- W2808077846 cites W1967542455 @default.
- W2808077846 cites W1990632866 @default.
- W2808077846 cites W2003896247 @default.
- W2808077846 cites W2008340591 @default.
- W2808077846 cites W2025768430 @default.
- W2808077846 cites W2112186756 @default.
- W2808077846 cites W2121616118 @default.
- W2808077846 cites W2130753734 @default.
- W2808077846 cites W2170396332 @default.
- W2808077846 cites W2301331605 @default.
- W2808077846 cites W4292363360 @default.
- W2808077846 doi "https://doi.org/10.1109/radar.2018.8378796" @default.
- W2808077846 hasPublicationYear "2018" @default.
- W2808077846 type Work @default.
- W2808077846 sameAs 2808077846 @default.
- W2808077846 citedByCount "12" @default.
- W2808077846 countsByYear W28080778462019 @default.
- W2808077846 countsByYear W28080778462020 @default.
- W2808077846 countsByYear W28080778462021 @default.
- W2808077846 countsByYear W28080778462022 @default.
- W2808077846 crossrefType "proceedings-article" @default.
- W2808077846 hasAuthorship W2808077846A5013341342 @default.
- W2808077846 hasAuthorship W2808077846A5016832424 @default.
- W2808077846 hasAuthorship W2808077846A5020310463 @default.
- W2808077846 hasAuthorship W2808077846A5042432973 @default.
- W2808077846 hasAuthorship W2808077846A5084624726 @default.
- W2808077846 hasConcept C10929652 @default.
- W2808077846 hasConcept C127162648 @default.
- W2808077846 hasConcept C127313418 @default.
- W2808077846 hasConcept C154945302 @default.
- W2808077846 hasConcept C163294075 @default.
- W2808077846 hasConcept C31972630 @default.
- W2808077846 hasConcept C32022120 @default.
- W2808077846 hasConcept C41008148 @default.
- W2808077846 hasConcept C554190296 @default.
- W2808077846 hasConcept C62649853 @default.
- W2808077846 hasConcept C76155785 @default.
- W2808077846 hasConceptScore W2808077846C10929652 @default.
- W2808077846 hasConceptScore W2808077846C127162648 @default.
- W2808077846 hasConceptScore W2808077846C127313418 @default.
- W2808077846 hasConceptScore W2808077846C154945302 @default.
- W2808077846 hasConceptScore W2808077846C163294075 @default.
- W2808077846 hasConceptScore W2808077846C31972630 @default.
- W2808077846 hasConceptScore W2808077846C32022120 @default.
- W2808077846 hasConceptScore W2808077846C41008148 @default.
- W2808077846 hasConceptScore W2808077846C554190296 @default.
- W2808077846 hasConceptScore W2808077846C62649853 @default.
- W2808077846 hasConceptScore W2808077846C76155785 @default.
- W2808077846 hasLocation W28080778461 @default.
- W2808077846 hasOpenAccess W2808077846 @default.
- W2808077846 hasPrimaryLocation W28080778461 @default.
- W2808077846 hasRelatedWork W1537845529 @default.
- W2808077846 hasRelatedWork W2006246348 @default.
- W2808077846 hasRelatedWork W2081458845 @default.
- W2808077846 hasRelatedWork W2091422131 @default.
- W2808077846 hasRelatedWork W2121413408 @default.
- W2808077846 hasRelatedWork W2143438001 @default.
- W2808077846 hasRelatedWork W2244096992 @default.
- W2808077846 hasRelatedWork W2483420468 @default.
- W2808077846 hasRelatedWork W2661611317 @default.
- W2808077846 hasRelatedWork W2023827590 @default.
- W2808077846 isParatext "false" @default.
- W2808077846 isRetracted "false" @default.
- W2808077846 magId "2808077846" @default.
- W2808077846 workType "article" @default.