Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808087148> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2808087148 abstract "Speech corpus is important for statistical model based automatic speech recognition and it reflects the performance of a speech recognizer. Although most of the speech corpora for resource-riched languages such as English are widely available and it can be used easily, there is no Myanmar speech corpus which is freely available for automatic speech recognition (ASR) research since Myanmar is a low resource language. This paper presents the design and development of Myanmar speech corpus for the news domain to be applied to convolutional neural network (CNN)-based Myanmar continuous speech recognition research. The speech corpus consists of 20 hours read speech data collected from online web news and there are 178 speakers (126 females and 52 males). Our speech corpus is evaluated on two test sets: TestSet1 (web data) and TestSet2 (news recording with 10 natives). Using CNN-based model, word error rate (WER) achieves 24.73% on TestSet1 and 22.95% on TestSet2." @default.
- W2808087148 created "2018-06-21" @default.
- W2808087148 creator A5034039876 @default.
- W2808087148 creator A5038930719 @default.
- W2808087148 creator A5066309896 @default.
- W2808087148 creator A5083674619 @default.
- W2808087148 date "2017-11-01" @default.
- W2808087148 modified "2023-09-23" @default.
- W2808087148 title "Developing a speech corpus from web news for Myanmar (Burmese) language" @default.
- W2808087148 cites W1524333225 @default.
- W2808087148 cites W1631260214 @default.
- W2808087148 cites W1975640689 @default.
- W2808087148 cites W2203871458 @default.
- W2808087148 cites W2289846468 @default.
- W2808087148 cites W775622597 @default.
- W2808087148 doi "https://doi.org/10.1109/icsda.2017.8384451" @default.
- W2808087148 hasPublicationYear "2017" @default.
- W2808087148 type Work @default.
- W2808087148 sameAs 2808087148 @default.
- W2808087148 citedByCount "1" @default.
- W2808087148 countsByYear W28080871482020 @default.
- W2808087148 crossrefType "proceedings-article" @default.
- W2808087148 hasAuthorship W2808087148A5034039876 @default.
- W2808087148 hasAuthorship W2808087148A5038930719 @default.
- W2808087148 hasAuthorship W2808087148A5066309896 @default.
- W2808087148 hasAuthorship W2808087148A5083674619 @default.
- W2808087148 hasConcept C138885662 @default.
- W2808087148 hasConcept C14999030 @default.
- W2808087148 hasConcept C154945302 @default.
- W2808087148 hasConcept C204321447 @default.
- W2808087148 hasConcept C2474386 @default.
- W2808087148 hasConcept C2779443383 @default.
- W2808087148 hasConcept C28490314 @default.
- W2808087148 hasConcept C40969351 @default.
- W2808087148 hasConcept C41008148 @default.
- W2808087148 hasConcept C41895202 @default.
- W2808087148 hasConcept C504749915 @default.
- W2808087148 hasConcept C54953205 @default.
- W2808087148 hasConcept C61328038 @default.
- W2808087148 hasConcept C81363708 @default.
- W2808087148 hasConcept C91863865 @default.
- W2808087148 hasConceptScore W2808087148C138885662 @default.
- W2808087148 hasConceptScore W2808087148C14999030 @default.
- W2808087148 hasConceptScore W2808087148C154945302 @default.
- W2808087148 hasConceptScore W2808087148C204321447 @default.
- W2808087148 hasConceptScore W2808087148C2474386 @default.
- W2808087148 hasConceptScore W2808087148C2779443383 @default.
- W2808087148 hasConceptScore W2808087148C28490314 @default.
- W2808087148 hasConceptScore W2808087148C40969351 @default.
- W2808087148 hasConceptScore W2808087148C41008148 @default.
- W2808087148 hasConceptScore W2808087148C41895202 @default.
- W2808087148 hasConceptScore W2808087148C504749915 @default.
- W2808087148 hasConceptScore W2808087148C54953205 @default.
- W2808087148 hasConceptScore W2808087148C61328038 @default.
- W2808087148 hasConceptScore W2808087148C81363708 @default.
- W2808087148 hasConceptScore W2808087148C91863865 @default.
- W2808087148 hasLocation W28080871481 @default.
- W2808087148 hasOpenAccess W2808087148 @default.
- W2808087148 hasPrimaryLocation W28080871481 @default.
- W2808087148 hasRelatedWork W1503665919 @default.
- W2808087148 hasRelatedWork W1540683981 @default.
- W2808087148 hasRelatedWork W1569446781 @default.
- W2808087148 hasRelatedWork W1632813081 @default.
- W2808087148 hasRelatedWork W1898164463 @default.
- W2808087148 hasRelatedWork W1975640689 @default.
- W2808087148 hasRelatedWork W2000491198 @default.
- W2808087148 hasRelatedWork W2009485653 @default.
- W2808087148 hasRelatedWork W2024733869 @default.
- W2808087148 hasRelatedWork W2055487029 @default.
- W2808087148 hasRelatedWork W2084281858 @default.
- W2808087148 hasRelatedWork W2147500075 @default.
- W2808087148 hasRelatedWork W2150398430 @default.
- W2808087148 hasRelatedWork W2567084565 @default.
- W2808087148 hasRelatedWork W2591335418 @default.
- W2808087148 hasRelatedWork W2905095391 @default.
- W2808087148 hasRelatedWork W2976274203 @default.
- W2808087148 hasRelatedWork W2982424756 @default.
- W2808087148 hasRelatedWork W3003629743 @default.
- W2808087148 hasRelatedWork W3208492395 @default.
- W2808087148 isParatext "false" @default.
- W2808087148 isRetracted "false" @default.
- W2808087148 magId "2808087148" @default.
- W2808087148 workType "article" @default.