Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808097153> ?p ?o ?g. }
- W2808097153 endingPage "31827" @default.
- W2808097153 startingPage "31820" @default.
- W2808097153 abstract "The urban traffic flow prediction is a significant issue in the intelligent transportation system. In consideration of nonlinear and spatial-temporal features of urban traffic data, we propose a deep hybrid neural network improved by greedy algorithm for urban traffic flow prediction with taxi GPS trace. The proposed deep neural network model first combines the convolutional neural network (CNN), which extracts the spatial features, with the long short term memory (LSTM), which captures the temporal information, to predict urban traffic flow. Then, the proposed model is trained by a greedy policy to short time consumption and improves accuracy when a network goes deeper. Experimental results with real taxis GPS trajectory data from ${Xi'an}$ city show that the improved deep hybrid CNN-LSTM model can achieve higher prediction accuracy and shorter time consumption compared with existing methods." @default.
- W2808097153 created "2018-06-21" @default.
- W2808097153 creator A5003850660 @default.
- W2808097153 creator A5037164369 @default.
- W2808097153 creator A5058411526 @default.
- W2808097153 creator A5059146006 @default.
- W2808097153 creator A5060836633 @default.
- W2808097153 date "2018-01-01" @default.
- W2808097153 modified "2023-09-29" @default.
- W2808097153 title "Improved Deep Hybrid Networks for Urban Traffic Flow Prediction Using Trajectory Data" @default.
- W2808097153 cites W1488674906 @default.
- W2808097153 cites W1582967062 @default.
- W2808097153 cites W1600744878 @default.
- W2808097153 cites W1982978808 @default.
- W2808097153 cites W1983364832 @default.
- W2808097153 cites W2005708641 @default.
- W2808097153 cites W2021153764 @default.
- W2808097153 cites W2069929199 @default.
- W2808097153 cites W2087012571 @default.
- W2808097153 cites W2088595989 @default.
- W2808097153 cites W2091565802 @default.
- W2808097153 cites W2100638363 @default.
- W2808097153 cites W2101915445 @default.
- W2808097153 cites W2112738128 @default.
- W2808097153 cites W2112796928 @default.
- W2808097153 cites W2113501460 @default.
- W2808097153 cites W2124657875 @default.
- W2808097153 cites W2151966330 @default.
- W2808097153 cites W2152161277 @default.
- W2808097153 cites W2165991108 @default.
- W2808097153 cites W2171234954 @default.
- W2808097153 cites W2194775991 @default.
- W2808097153 cites W2498017881 @default.
- W2808097153 cites W2504266609 @default.
- W2808097153 cites W2535805784 @default.
- W2808097153 cites W2573587735 @default.
- W2808097153 cites W2589026418 @default.
- W2808097153 cites W2604537950 @default.
- W2808097153 cites W2610961739 @default.
- W2808097153 cites W2621620987 @default.
- W2808097153 cites W2624924877 @default.
- W2808097153 cites W2743372900 @default.
- W2808097153 cites W2752740243 @default.
- W2808097153 cites W2769716261 @default.
- W2808097153 cites W2769744185 @default.
- W2808097153 cites W2962917186 @default.
- W2808097153 cites W2963027910 @default.
- W2808097153 cites W2963917928 @default.
- W2808097153 cites W32403112 @default.
- W2808097153 doi "https://doi.org/10.1109/access.2018.2845863" @default.
- W2808097153 hasPublicationYear "2018" @default.
- W2808097153 type Work @default.
- W2808097153 sameAs 2808097153 @default.
- W2808097153 citedByCount "104" @default.
- W2808097153 countsByYear W28080971532018 @default.
- W2808097153 countsByYear W28080971532019 @default.
- W2808097153 countsByYear W28080971532020 @default.
- W2808097153 countsByYear W28080971532021 @default.
- W2808097153 countsByYear W28080971532022 @default.
- W2808097153 countsByYear W28080971532023 @default.
- W2808097153 crossrefType "journal-article" @default.
- W2808097153 hasAuthorship W2808097153A5003850660 @default.
- W2808097153 hasAuthorship W2808097153A5037164369 @default.
- W2808097153 hasAuthorship W2808097153A5058411526 @default.
- W2808097153 hasAuthorship W2808097153A5059146006 @default.
- W2808097153 hasAuthorship W2808097153A5060836633 @default.
- W2808097153 hasBestOaLocation W28080971531 @default.
- W2808097153 hasConcept C121332964 @default.
- W2808097153 hasConcept C1276947 @default.
- W2808097153 hasConcept C13662910 @default.
- W2808097153 hasConcept C207512268 @default.
- W2808097153 hasConcept C2524010 @default.
- W2808097153 hasConcept C31258907 @default.
- W2808097153 hasConcept C33923547 @default.
- W2808097153 hasConcept C38349280 @default.
- W2808097153 hasConcept C41008148 @default.
- W2808097153 hasConceptScore W2808097153C121332964 @default.
- W2808097153 hasConceptScore W2808097153C1276947 @default.
- W2808097153 hasConceptScore W2808097153C13662910 @default.
- W2808097153 hasConceptScore W2808097153C207512268 @default.
- W2808097153 hasConceptScore W2808097153C2524010 @default.
- W2808097153 hasConceptScore W2808097153C31258907 @default.
- W2808097153 hasConceptScore W2808097153C33923547 @default.
- W2808097153 hasConceptScore W2808097153C38349280 @default.
- W2808097153 hasConceptScore W2808097153C41008148 @default.
- W2808097153 hasFunder F4320322725 @default.
- W2808097153 hasLocation W28080971531 @default.
- W2808097153 hasOpenAccess W2808097153 @default.
- W2808097153 hasPrimaryLocation W28080971531 @default.
- W2808097153 hasRelatedWork W1571484390 @default.
- W2808097153 hasRelatedWork W1973704629 @default.
- W2808097153 hasRelatedWork W2063184644 @default.
- W2808097153 hasRelatedWork W2202890341 @default.
- W2808097153 hasRelatedWork W2325461235 @default.
- W2808097153 hasRelatedWork W2380938576 @default.
- W2808097153 hasRelatedWork W2461042672 @default.
- W2808097153 hasRelatedWork W2990519519 @default.
- W2808097153 hasRelatedWork W2990688456 @default.