Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808099623> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2808099623 endingPage "139" @default.
- W2808099623 startingPage "132" @default.
- W2808099623 abstract "Deep convolutional neural networks (convnets) have recently become popular in many research areas because convnets can extract features automatically and classify them with high accuracy. Researchers in the image forensics and steganalysis field have proposed methods using convnets to develop technologies that work in practical environments. However, they found that the convnets used for computer vision were not suitable for image forensics and steganalysis because these convnets tend to learn features that represent the contents of images rather than forensic or steganalysis features. To overcome this limitation, researchers have proposed various structures, but there are no studies that take into account other factors related to training neural networks for image forensics and steganalysis. In this paper, we clearly represent the training process for image forensics and steganalysis using a training equation and explain why training convnets with the standard mini-batch is inefficient for image forensics and steganalysis. We then propose a new mini-batch, called the paired mini-batch, which is better suited for image forensics and steganalysis." @default.
- W2808099623 created "2018-06-21" @default.
- W2808099623 creator A5009962679 @default.
- W2808099623 creator A5013397068 @default.
- W2808099623 creator A5056976307 @default.
- W2808099623 creator A5077098279 @default.
- W2808099623 creator A5082393568 @default.
- W2808099623 date "2018-09-01" @default.
- W2808099623 modified "2023-10-17" @default.
- W2808099623 title "Paired mini-batch training: A new deep network training for image forensics and steganalysis" @default.
- W2808099623 cites W1832693441 @default.
- W2808099623 cites W1923404803 @default.
- W2808099623 cites W1942214758 @default.
- W2808099623 cites W1997127867 @default.
- W2808099623 cites W2009130368 @default.
- W2808099623 cites W2046686077 @default.
- W2808099623 cites W2120615054 @default.
- W2808099623 cites W2124695272 @default.
- W2808099623 cites W2145287260 @default.
- W2808099623 cites W2162192649 @default.
- W2808099623 cites W2170598445 @default.
- W2808099623 cites W2191835017 @default.
- W2808099623 cites W2407561938 @default.
- W2808099623 cites W2460849547 @default.
- W2808099623 cites W2748806792 @default.
- W2808099623 doi "https://doi.org/10.1016/j.image.2018.04.015" @default.
- W2808099623 hasPublicationYear "2018" @default.
- W2808099623 type Work @default.
- W2808099623 sameAs 2808099623 @default.
- W2808099623 citedByCount "10" @default.
- W2808099623 countsByYear W28080996232019 @default.
- W2808099623 countsByYear W28080996232020 @default.
- W2808099623 countsByYear W28080996232021 @default.
- W2808099623 countsByYear W28080996232022 @default.
- W2808099623 countsByYear W28080996232023 @default.
- W2808099623 crossrefType "journal-article" @default.
- W2808099623 hasAuthorship W2808099623A5009962679 @default.
- W2808099623 hasAuthorship W2808099623A5013397068 @default.
- W2808099623 hasAuthorship W2808099623A5056976307 @default.
- W2808099623 hasAuthorship W2808099623A5077098279 @default.
- W2808099623 hasAuthorship W2808099623A5082393568 @default.
- W2808099623 hasConcept C107368093 @default.
- W2808099623 hasConcept C108801101 @default.
- W2808099623 hasConcept C111919701 @default.
- W2808099623 hasConcept C115961682 @default.
- W2808099623 hasConcept C121332964 @default.
- W2808099623 hasConcept C124101348 @default.
- W2808099623 hasConcept C153180895 @default.
- W2808099623 hasConcept C153294291 @default.
- W2808099623 hasConcept C154945302 @default.
- W2808099623 hasConcept C2777211547 @default.
- W2808099623 hasConcept C38652104 @default.
- W2808099623 hasConcept C41008148 @default.
- W2808099623 hasConcept C50644808 @default.
- W2808099623 hasConcept C556601545 @default.
- W2808099623 hasConcept C81363708 @default.
- W2808099623 hasConcept C84418412 @default.
- W2808099623 hasConcept C98045186 @default.
- W2808099623 hasConceptScore W2808099623C107368093 @default.
- W2808099623 hasConceptScore W2808099623C108801101 @default.
- W2808099623 hasConceptScore W2808099623C111919701 @default.
- W2808099623 hasConceptScore W2808099623C115961682 @default.
- W2808099623 hasConceptScore W2808099623C121332964 @default.
- W2808099623 hasConceptScore W2808099623C124101348 @default.
- W2808099623 hasConceptScore W2808099623C153180895 @default.
- W2808099623 hasConceptScore W2808099623C153294291 @default.
- W2808099623 hasConceptScore W2808099623C154945302 @default.
- W2808099623 hasConceptScore W2808099623C2777211547 @default.
- W2808099623 hasConceptScore W2808099623C38652104 @default.
- W2808099623 hasConceptScore W2808099623C41008148 @default.
- W2808099623 hasConceptScore W2808099623C50644808 @default.
- W2808099623 hasConceptScore W2808099623C556601545 @default.
- W2808099623 hasConceptScore W2808099623C81363708 @default.
- W2808099623 hasConceptScore W2808099623C84418412 @default.
- W2808099623 hasConceptScore W2808099623C98045186 @default.
- W2808099623 hasLocation W28080996231 @default.
- W2808099623 hasOpenAccess W2808099623 @default.
- W2808099623 hasPrimaryLocation W28080996231 @default.
- W2808099623 hasRelatedWork W2061156687 @default.
- W2808099623 hasRelatedWork W2143810666 @default.
- W2808099623 hasRelatedWork W2504848757 @default.
- W2808099623 hasRelatedWork W2605566016 @default.
- W2808099623 hasRelatedWork W2944488608 @default.
- W2808099623 hasRelatedWork W3113162624 @default.
- W2808099623 hasRelatedWork W3214301479 @default.
- W2808099623 hasRelatedWork W4281768501 @default.
- W2808099623 hasRelatedWork W831794578 @default.
- W2808099623 hasRelatedWork W93708786 @default.
- W2808099623 hasVolume "67" @default.
- W2808099623 isParatext "false" @default.
- W2808099623 isRetracted "false" @default.
- W2808099623 magId "2808099623" @default.
- W2808099623 workType "article" @default.