Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808164093> ?p ?o ?g. }
- W2808164093 endingPage "294" @default.
- W2808164093 startingPage "286" @default.
- W2808164093 abstract "Internal-body (core) and surface temperatures of livestock are important information that indicate heat stress status and comfort of animals. Previous studies focused on developing mechanistic and empirical models to predict these temperatures. Mechanistic models based on bioenergetics of animals often require parameters that may be difficult to obtain (e.g., thickness of internal tissues). Empirical models, on the other hand, are data-based and often assume linear relationships between predictor (e.g., air temperature) and response (e.g., internal-body temperature) variables although, from the theory of bioenergetics, the relationship between the predictor and the response variables is non-linear. One alternative to consider non-linearity is to use machine learning algorithms to predict physiological temperatures. Unlike mechanistic models, machine learning algorithms do not depend on biophysical parameters, and, unlike linear empirical models, machine learning algorithms automatically select the predictor variables and find non-linear functions between predictor and response variables. In this paper, we tested four different machine learning algorithms to predict rectal (Tr), skin-surface (Ts), and hair-coat surface (Th) temperatures of piglets based on environmental data. From the four algorithms considered, deep neural networks provided the best prediction for Tr with an error of 0.36%, gradient boosted machines provided the best prediction for Ts with an error of 0.62%, and random forests provided the best predictions for Th with an error of 1.35%. These three algorithms were robust for a wide range of inputs. The fourth algorithm, generalized linear regression, predicted at higher errors and was not robust for a wide range of inputs. This study supports the use of machine learning algorithms (specifically deep neural networks, gradient boosted machines, and random forests) to predict physiological temperature responses of piglets." @default.
- W2808164093 created "2018-06-21" @default.
- W2808164093 creator A5002769510 @default.
- W2808164093 creator A5053847435 @default.
- W2808164093 creator A5064820560 @default.
- W2808164093 creator A5075713205 @default.
- W2808164093 date "2018-08-01" @default.
- W2808164093 modified "2023-10-13" @default.
- W2808164093 title "Machine learning algorithms to predict core, skin, and hair-coat temperatures of piglets" @default.
- W2808164093 cites W181439542 @default.
- W2808164093 cites W1927233378 @default.
- W2808164093 cites W1964189895 @default.
- W2808164093 cites W1990286763 @default.
- W2808164093 cites W1993702528 @default.
- W2808164093 cites W2015678706 @default.
- W2808164093 cites W2021338918 @default.
- W2808164093 cites W2049895043 @default.
- W2808164093 cites W2050371290 @default.
- W2808164093 cites W2059394014 @default.
- W2808164093 cites W2077212558 @default.
- W2808164093 cites W2079275565 @default.
- W2808164093 cites W2083055183 @default.
- W2808164093 cites W2088794999 @default.
- W2808164093 cites W2104178017 @default.
- W2808164093 cites W2111433590 @default.
- W2808164093 cites W2113637157 @default.
- W2808164093 cites W2114803675 @default.
- W2808164093 cites W2122723556 @default.
- W2808164093 cites W2122825543 @default.
- W2808164093 cites W2153723707 @default.
- W2808164093 cites W2156186407 @default.
- W2808164093 cites W2164727961 @default.
- W2808164093 cites W2346684344 @default.
- W2808164093 cites W2467295608 @default.
- W2808164093 cites W2522379694 @default.
- W2808164093 cites W2546633712 @default.
- W2808164093 cites W2582961092 @default.
- W2808164093 cites W2585621008 @default.
- W2808164093 cites W2591121333 @default.
- W2808164093 cites W2605542664 @default.
- W2808164093 cites W2616251437 @default.
- W2808164093 cites W2790979755 @default.
- W2808164093 cites W2791688281 @default.
- W2808164093 cites W2911964244 @default.
- W2808164093 cites W72207848 @default.
- W2808164093 cites W760806350 @default.
- W2808164093 doi "https://doi.org/10.1016/j.compag.2018.06.028" @default.
- W2808164093 hasPublicationYear "2018" @default.
- W2808164093 type Work @default.
- W2808164093 sameAs 2808164093 @default.
- W2808164093 citedByCount "23" @default.
- W2808164093 countsByYear W28081640932019 @default.
- W2808164093 countsByYear W28081640932020 @default.
- W2808164093 countsByYear W28081640932021 @default.
- W2808164093 countsByYear W28081640932022 @default.
- W2808164093 countsByYear W28081640932023 @default.
- W2808164093 crossrefType "journal-article" @default.
- W2808164093 hasAuthorship W2808164093A5002769510 @default.
- W2808164093 hasAuthorship W2808164093A5053847435 @default.
- W2808164093 hasAuthorship W2808164093A5064820560 @default.
- W2808164093 hasAuthorship W2808164093A5075713205 @default.
- W2808164093 hasBestOaLocation W28081640931 @default.
- W2808164093 hasConcept C105795698 @default.
- W2808164093 hasConcept C11413529 @default.
- W2808164093 hasConcept C119857082 @default.
- W2808164093 hasConcept C133199616 @default.
- W2808164093 hasConcept C154945302 @default.
- W2808164093 hasConcept C163175372 @default.
- W2808164093 hasConcept C169258074 @default.
- W2808164093 hasConcept C33923547 @default.
- W2808164093 hasConcept C41008148 @default.
- W2808164093 hasConcept C44154836 @default.
- W2808164093 hasConcept C48921125 @default.
- W2808164093 hasConcept C50644808 @default.
- W2808164093 hasConcept C83546350 @default.
- W2808164093 hasConceptScore W2808164093C105795698 @default.
- W2808164093 hasConceptScore W2808164093C11413529 @default.
- W2808164093 hasConceptScore W2808164093C119857082 @default.
- W2808164093 hasConceptScore W2808164093C133199616 @default.
- W2808164093 hasConceptScore W2808164093C154945302 @default.
- W2808164093 hasConceptScore W2808164093C163175372 @default.
- W2808164093 hasConceptScore W2808164093C169258074 @default.
- W2808164093 hasConceptScore W2808164093C33923547 @default.
- W2808164093 hasConceptScore W2808164093C41008148 @default.
- W2808164093 hasConceptScore W2808164093C44154836 @default.
- W2808164093 hasConceptScore W2808164093C48921125 @default.
- W2808164093 hasConceptScore W2808164093C50644808 @default.
- W2808164093 hasConceptScore W2808164093C83546350 @default.
- W2808164093 hasFunder F4320306114 @default.
- W2808164093 hasFunder F4320309624 @default.
- W2808164093 hasFunder F4320320997 @default.
- W2808164093 hasFunder F4320322025 @default.
- W2808164093 hasLocation W28081640931 @default.
- W2808164093 hasLocation W28081640932 @default.
- W2808164093 hasOpenAccess W2808164093 @default.
- W2808164093 hasPrimaryLocation W28081640931 @default.
- W2808164093 hasRelatedWork W2288557197 @default.
- W2808164093 hasRelatedWork W2787485953 @default.