Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808221945> ?p ?o ?g. }
- W2808221945 endingPage "28" @default.
- W2808221945 startingPage "28" @default.
- W2808221945 abstract "Desalination of sea or brackish water sources to provide clean water supplies has now become a feasible option around the world. Escalating global populations have caused the surge of desalination applications. Desalination processes are energy intensive which results in a significant energy portfolio and associated environmental pollution for many communities. Both electrical and heat energy required for desalination processes have been reduced significantly over the recent years. However, the energy demands are still high and are expected to grow sharply with increasing population. Desalination technologies utilize various forms of energy to produce freshwater. While the process efficiency can be reported by the first law of thermodynamic analysis, this is not a true measure of the process performance as it does not account for all losses of energy. Accordingly, the second law of thermodynamics has been more useful to evaluate the performance of desalination systems. The second law of thermodynamics (exergy analysis) accounts for the available forms of energy in the process streams and energy sources with a reference environment and identifies the major losses of exergy destruction. This aids in developing efficient desalination processes by eliminating the hidden losses. This paper elaborates on exergy analysis of desalination processes to evaluate the thermodynamic efficiency of major components and process streams and identifies suitable operating conditions to minimize exergy destruction. Well-established MSF, MED, MED-TVC, RO, solar distillation, and membrane distillation technologies were discussed with case studies to illustrate the exergy performances." @default.
- W2808221945 created "2018-06-21" @default.
- W2808221945 creator A5077646571 @default.
- W2808221945 date "2018-06-14" @default.
- W2808221945 modified "2023-09-26" @default.
- W2808221945 title "Exergy Evaluation of Desalination Processes" @default.
- W2808221945 cites W1957142716 @default.
- W2808221945 cites W1965787374 @default.
- W2808221945 cites W1972688390 @default.
- W2808221945 cites W1974035562 @default.
- W2808221945 cites W1974171732 @default.
- W2808221945 cites W1974464777 @default.
- W2808221945 cites W1975604404 @default.
- W2808221945 cites W1976298953 @default.
- W2808221945 cites W1977455933 @default.
- W2808221945 cites W1980963420 @default.
- W2808221945 cites W1986426311 @default.
- W2808221945 cites W1991382674 @default.
- W2808221945 cites W1994081449 @default.
- W2808221945 cites W1997478630 @default.
- W2808221945 cites W1997821608 @default.
- W2808221945 cites W2001304477 @default.
- W2808221945 cites W2002247842 @default.
- W2808221945 cites W2003979449 @default.
- W2808221945 cites W2009585111 @default.
- W2808221945 cites W2010059870 @default.
- W2808221945 cites W2014489459 @default.
- W2808221945 cites W2014674154 @default.
- W2808221945 cites W2014694022 @default.
- W2808221945 cites W2017279280 @default.
- W2808221945 cites W2020365010 @default.
- W2808221945 cites W2027884536 @default.
- W2808221945 cites W2028159238 @default.
- W2808221945 cites W2029747539 @default.
- W2808221945 cites W2031173123 @default.
- W2808221945 cites W2032070996 @default.
- W2808221945 cites W2034648405 @default.
- W2808221945 cites W2039599807 @default.
- W2808221945 cites W2039796102 @default.
- W2808221945 cites W2042620695 @default.
- W2808221945 cites W2042663028 @default.
- W2808221945 cites W2046696263 @default.
- W2808221945 cites W2048049902 @default.
- W2808221945 cites W2050129536 @default.
- W2808221945 cites W2054757321 @default.
- W2808221945 cites W2056697704 @default.
- W2808221945 cites W2057376458 @default.
- W2808221945 cites W2059912413 @default.
- W2808221945 cites W2060074684 @default.
- W2808221945 cites W2060691393 @default.
- W2808221945 cites W2065344497 @default.
- W2808221945 cites W2067467579 @default.
- W2808221945 cites W2067849913 @default.
- W2808221945 cites W2069340772 @default.
- W2808221945 cites W2070678700 @default.
- W2808221945 cites W2071401154 @default.
- W2808221945 cites W2071676503 @default.
- W2808221945 cites W2071945368 @default.
- W2808221945 cites W2073607857 @default.
- W2808221945 cites W2074731246 @default.
- W2808221945 cites W2076359812 @default.
- W2808221945 cites W2076409046 @default.
- W2808221945 cites W2078991887 @default.
- W2808221945 cites W2079970656 @default.
- W2808221945 cites W2080208167 @default.
- W2808221945 cites W2080908136 @default.
- W2808221945 cites W2087105545 @default.
- W2808221945 cites W2087392642 @default.
- W2808221945 cites W2087652733 @default.
- W2808221945 cites W2090693406 @default.
- W2808221945 cites W2091274855 @default.
- W2808221945 cites W2105315346 @default.
- W2808221945 cites W2120799394 @default.
- W2808221945 cites W2139269609 @default.
- W2808221945 cites W2141982567 @default.
- W2808221945 cites W2145255171 @default.
- W2808221945 cites W2157533998 @default.
- W2808221945 cites W2161499366 @default.
- W2808221945 cites W2162892675 @default.
- W2808221945 cites W2172651312 @default.
- W2808221945 cites W2201154445 @default.
- W2808221945 cites W2343971200 @default.
- W2808221945 cites W2400321248 @default.
- W2808221945 cites W2480473198 @default.
- W2808221945 cites W2511704024 @default.
- W2808221945 cites W2560426714 @default.
- W2808221945 cites W2597428488 @default.
- W2808221945 cites W2606260640 @default.
- W2808221945 cites W2610397775 @default.
- W2808221945 cites W2686182155 @default.
- W2808221945 cites W2766840064 @default.
- W2808221945 cites W2769721953 @default.
- W2808221945 cites W2776902636 @default.
- W2808221945 cites W4254301444 @default.
- W2808221945 cites W600871656 @default.
- W2808221945 cites W652872429 @default.
- W2808221945 cites W83889805 @default.
- W2808221945 doi "https://doi.org/10.3390/chemengineering2020028" @default.