Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808301838> ?p ?o ?g. }
- W2808301838 endingPage "144" @default.
- W2808301838 startingPage "127" @default.
- W2808301838 abstract "Estimation of hidden variables is among the most challenging tasks in statistical signal processing. In this context, hidden Markov chains have been extensively used due to their ability to recover hidden variables from observed ones even for large data. Such models fail, however, to handle nonstationary data when parameters are unknown. The aim of this paper is to show how the recent triplet Markov chains, strictly more general models exhibiting comparable computational cost, can be used to overcome this shortcoming in two different ways: (i) in a firmly Bayesian context by considering an additional Markov process to model the switches of the hidden variables; and, (ii) by introducing Dempster-Shafer theory to model the lack of precision of prior distributions. Moreover, we analyze both approaches and assess their performance through experiments conducted on sampled data and noised images." @default.
- W2808301838 created "2018-06-21" @default.
- W2808301838 creator A5015284052 @default.
- W2808301838 creator A5049173200 @default.
- W2808301838 creator A5062348685 @default.
- W2808301838 creator A5078186924 @default.
- W2808301838 creator A5079163505 @default.
- W2808301838 date "2018-01-01" @default.
- W2808301838 modified "2023-09-26" @default.
- W2808301838 title "Triplet Markov Chains Based- Estimation of Nonstationary Latent Variables Hidden with Independent Noise" @default.
- W2808301838 cites W152717443 @default.
- W2808301838 cites W1549593593 @default.
- W2808301838 cites W1979819117 @default.
- W2808301838 cites W2009467168 @default.
- W2808301838 cites W2011223236 @default.
- W2808301838 cites W2020316261 @default.
- W2808301838 cites W2039473210 @default.
- W2808301838 cites W2044016190 @default.
- W2808301838 cites W2047289812 @default.
- W2808301838 cites W2050341350 @default.
- W2808301838 cites W2067031041 @default.
- W2808301838 cites W2076020996 @default.
- W2808301838 cites W2078827936 @default.
- W2808301838 cites W2081144903 @default.
- W2808301838 cites W2086611999 @default.
- W2808301838 cites W2086699924 @default.
- W2808301838 cites W2105532481 @default.
- W2808301838 cites W2106506108 @default.
- W2808301838 cites W2109685219 @default.
- W2808301838 cites W2116212047 @default.
- W2808301838 cites W2116742812 @default.
- W2808301838 cites W2123905752 @default.
- W2808301838 cites W2125838338 @default.
- W2808301838 cites W2127151297 @default.
- W2808301838 cites W2136799844 @default.
- W2808301838 cites W2142384583 @default.
- W2808301838 cites W2143033216 @default.
- W2808301838 cites W2144648668 @default.
- W2808301838 cites W2149396887 @default.
- W2808301838 cites W2153910388 @default.
- W2808301838 cites W2168062689 @default.
- W2808301838 cites W2176665413 @default.
- W2808301838 cites W2244065661 @default.
- W2808301838 cites W2314662495 @default.
- W2808301838 cites W2314800511 @default.
- W2808301838 cites W2322069714 @default.
- W2808301838 cites W2513092682 @default.
- W2808301838 cites W2520029346 @default.
- W2808301838 cites W2534437496 @default.
- W2808301838 cites W2617813214 @default.
- W2808301838 cites W3106205653 @default.
- W2808301838 cites W4250389103 @default.
- W2808301838 cites W4301347335 @default.
- W2808301838 cites W674670 @default.
- W2808301838 doi "https://doi.org/10.1007/978-3-319-93375-7_7" @default.
- W2808301838 hasPublicationYear "2018" @default.
- W2808301838 type Work @default.
- W2808301838 sameAs 2808301838 @default.
- W2808301838 citedByCount "0" @default.
- W2808301838 crossrefType "book-chapter" @default.
- W2808301838 hasAuthorship W2808301838A5015284052 @default.
- W2808301838 hasAuthorship W2808301838A5049173200 @default.
- W2808301838 hasAuthorship W2808301838A5062348685 @default.
- W2808301838 hasAuthorship W2808301838A5078186924 @default.
- W2808301838 hasAuthorship W2808301838A5079163505 @default.
- W2808301838 hasConcept C105795698 @default.
- W2808301838 hasConcept C107673813 @default.
- W2808301838 hasConcept C11413529 @default.
- W2808301838 hasConcept C115961682 @default.
- W2808301838 hasConcept C119857082 @default.
- W2808301838 hasConcept C121332964 @default.
- W2808301838 hasConcept C137002209 @default.
- W2808301838 hasConcept C151730666 @default.
- W2808301838 hasConcept C153180895 @default.
- W2808301838 hasConcept C154945302 @default.
- W2808301838 hasConcept C159886148 @default.
- W2808301838 hasConcept C163836022 @default.
- W2808301838 hasConcept C23224414 @default.
- W2808301838 hasConcept C2779343474 @default.
- W2808301838 hasConcept C33923547 @default.
- W2808301838 hasConcept C41008148 @default.
- W2808301838 hasConcept C51167844 @default.
- W2808301838 hasConcept C54907487 @default.
- W2808301838 hasConcept C62520636 @default.
- W2808301838 hasConcept C64939953 @default.
- W2808301838 hasConcept C84114770 @default.
- W2808301838 hasConcept C86803240 @default.
- W2808301838 hasConcept C98763669 @default.
- W2808301838 hasConcept C99498987 @default.
- W2808301838 hasConceptScore W2808301838C105795698 @default.
- W2808301838 hasConceptScore W2808301838C107673813 @default.
- W2808301838 hasConceptScore W2808301838C11413529 @default.
- W2808301838 hasConceptScore W2808301838C115961682 @default.
- W2808301838 hasConceptScore W2808301838C119857082 @default.
- W2808301838 hasConceptScore W2808301838C121332964 @default.
- W2808301838 hasConceptScore W2808301838C137002209 @default.
- W2808301838 hasConceptScore W2808301838C151730666 @default.
- W2808301838 hasConceptScore W2808301838C153180895 @default.