Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808309460> ?p ?o ?g. }
- W2808309460 endingPage "6230" @default.
- W2808309460 startingPage "6203" @default.
- W2808309460 abstract "Abstract. Primary biological aerosol including bacteria, fungal spores and pollen have important implications for public health and the environment. Such particles may have different concentrations of chemical fluorophores and will respond differently in the presence of ultraviolet light, potentially allowing for different types of biological aerosol to be discriminated. Development of ultraviolet light induced fluorescence (UV-LIF) instruments such as the Wideband Integrated Bioaerosol Sensor (WIBS) has allowed for size, morphology and fluorescence measurements to be collected in real-time. However, it is unclear without studying instrument responses in the laboratory, the extent to which different types of particles can be discriminated. Collection of laboratory data is vital to validate any approach used to analyse data and ensure that the data available is utilized as effectively as possible. In this paper a variety of methodologies are tested on a range of particles collected in the laboratory. Hierarchical agglomerative clustering (HAC) has been previously applied to UV-LIF data in a number of studies and is tested alongside other algorithms that could be used to solve the classification problem: Density Based Spectral Clustering and Noise (DBSCAN), k-means and gradient boosting. Whilst HAC was able to effectively discriminate between reference narrow-size distribution PSL particles, yielding a classification error of only 1.8 %, similar results were not obtained when testing on laboratory generated aerosol where the classification error was found to be between 11.5 % and 24.2 %. Furthermore, there is a large uncertainty in this approach in terms of the data preparation and the cluster index used, and we were unable to attain consistent results across the different sets of laboratory generated aerosol tested. The lowest classification errors were obtained using gradient boosting, where the misclassification rate was between 4.38 % and 5.42 %. The largest contribution to the error, in the case of the higher misclassification rate, was the pollen samples where 28.5 % of the samples were incorrectly classified as fungal spores. The technique was robust to changes in data preparation provided a fluorescent threshold was applied to the data. In the event that laboratory training data are unavailable, DBSCAN was found to be a potential alternative to HAC. In the case of one of the data sets where 22.9 % of the data were left unclassified we were able to produce three distinct clusters obtaining a classification error of only 1.42 % on the classified data. These results could not be replicated for the other data set where 26.8 % of the data were not classified and a classification error of 13.8 % was obtained. This method, like HAC, also appeared to be heavily dependent on data preparation, requiring a different selection of parameters depending on the preparation used. Further analysis will also be required to confirm our selection of the parameters when using this method on ambient data. There is a clear need for the collection of additional laboratory generated aerosol to improve interpretation of current databases and to aid in the analysis of data collected from an ambient environment. New instruments with a greater resolution are likely to improve on current discrimination between pollen, bacteria and fungal spores and even between different species, however the need for extensive laboratory data sets will grow as a result." @default.
- W2808309460 created "2018-06-21" @default.
- W2808309460 creator A5004095631 @default.
- W2808309460 creator A5028803001 @default.
- W2808309460 creator A5056863270 @default.
- W2808309460 creator A5073832071 @default.
- W2808309460 creator A5082779159 @default.
- W2808309460 date "2018-11-19" @default.
- W2808309460 modified "2023-10-02" @default.
- W2808309460 title "Machine learning for improved data analysis of biological aerosol using the WIBS" @default.
- W2808309460 cites W159312602 @default.
- W2808309460 cites W1678356000 @default.
- W2808309460 cites W1746440946 @default.
- W2808309460 cites W1748428292 @default.
- W2808309460 cites W1975152892 @default.
- W2808309460 cites W1976383685 @default.
- W2808309460 cites W1977378656 @default.
- W2808309460 cites W1988790447 @default.
- W2808309460 cites W1989512411 @default.
- W2808309460 cites W2003760226 @default.
- W2808309460 cites W2011660542 @default.
- W2808309460 cites W2019290634 @default.
- W2808309460 cites W2019663344 @default.
- W2808309460 cites W2023677328 @default.
- W2808309460 cites W2038363137 @default.
- W2808309460 cites W2054787086 @default.
- W2808309460 cites W2064482494 @default.
- W2808309460 cites W2078236700 @default.
- W2808309460 cites W2092759399 @default.
- W2808309460 cites W2093674996 @default.
- W2808309460 cites W2097528821 @default.
- W2808309460 cites W2098816487 @default.
- W2808309460 cites W2103328925 @default.
- W2808309460 cites W2113054345 @default.
- W2808309460 cites W2116427781 @default.
- W2808309460 cites W2129502617 @default.
- W2808309460 cites W2140149092 @default.
- W2808309460 cites W2140247361 @default.
- W2808309460 cites W2146577751 @default.
- W2808309460 cites W2158668210 @default.
- W2808309460 cites W2170688036 @default.
- W2808309460 cites W2290295497 @default.
- W2808309460 cites W2464129681 @default.
- W2808309460 cites W2727962680 @default.
- W2808309460 cites W2775165053 @default.
- W2808309460 cites W2802329236 @default.
- W2808309460 cites W2893630582 @default.
- W2808309460 cites W2911964244 @default.
- W2808309460 cites W4212883601 @default.
- W2808309460 cites W4235011515 @default.
- W2808309460 cites W4235169531 @default.
- W2808309460 cites W4242401062 @default.
- W2808309460 cites W4247150125 @default.
- W2808309460 doi "https://doi.org/10.5194/amt-11-6203-2018" @default.
- W2808309460 hasPublicationYear "2018" @default.
- W2808309460 type Work @default.
- W2808309460 sameAs 2808309460 @default.
- W2808309460 citedByCount "22" @default.
- W2808309460 countsByYear W28083094602019 @default.
- W2808309460 countsByYear W28083094602020 @default.
- W2808309460 countsByYear W28083094602021 @default.
- W2808309460 countsByYear W28083094602022 @default.
- W2808309460 countsByYear W28083094602023 @default.
- W2808309460 crossrefType "journal-article" @default.
- W2808309460 hasAuthorship W2808309460A5004095631 @default.
- W2808309460 hasAuthorship W2808309460A5028803001 @default.
- W2808309460 hasAuthorship W2808309460A5056863270 @default.
- W2808309460 hasAuthorship W2808309460A5073832071 @default.
- W2808309460 hasAuthorship W2808309460A5082779159 @default.
- W2808309460 hasBestOaLocation W28083094601 @default.
- W2808309460 hasConcept C121332964 @default.
- W2808309460 hasConcept C12267149 @default.
- W2808309460 hasConcept C153180895 @default.
- W2808309460 hasConcept C153294291 @default.
- W2808309460 hasConcept C154945302 @default.
- W2808309460 hasConcept C186060115 @default.
- W2808309460 hasConcept C205649164 @default.
- W2808309460 hasConcept C2775921931 @default.
- W2808309460 hasConcept C2779345167 @default.
- W2808309460 hasConcept C39432304 @default.
- W2808309460 hasConcept C41008148 @default.
- W2808309460 hasConcept C62649853 @default.
- W2808309460 hasConcept C73555534 @default.
- W2808309460 hasConcept C86803240 @default.
- W2808309460 hasConcept C92835128 @default.
- W2808309460 hasConceptScore W2808309460C121332964 @default.
- W2808309460 hasConceptScore W2808309460C12267149 @default.
- W2808309460 hasConceptScore W2808309460C153180895 @default.
- W2808309460 hasConceptScore W2808309460C153294291 @default.
- W2808309460 hasConceptScore W2808309460C154945302 @default.
- W2808309460 hasConceptScore W2808309460C186060115 @default.
- W2808309460 hasConceptScore W2808309460C205649164 @default.
- W2808309460 hasConceptScore W2808309460C2775921931 @default.
- W2808309460 hasConceptScore W2808309460C2779345167 @default.
- W2808309460 hasConceptScore W2808309460C39432304 @default.
- W2808309460 hasConceptScore W2808309460C41008148 @default.
- W2808309460 hasConceptScore W2808309460C62649853 @default.
- W2808309460 hasConceptScore W2808309460C73555534 @default.