Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808396915> ?p ?o ?g. }
- W2808396915 endingPage "3532" @default.
- W2808396915 startingPage "3519" @default.
- W2808396915 abstract "Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in accommodating skewness and complex correlation structures. In addition, the existing estimation approaches generally rely heavily on the specifications of random effects distributions; therefore, the corresponding inferences are sometimes sensitive to the choice of random effect distributions under certain circumstance. In this paper, we incorporate serially dependent distribution‐free random effects into Tweedie generalized linear models to accommodate a wide range of skewness and covariance structures for discrete and continuous longitudinal data. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors of random effects. Our approach unifies population‐averaged and subject‐specific inferences. Our method is illustrated through the analyses of patient‐controlled analgesia data and Framingham cholesterol data." @default.
- W2808396915 created "2018-06-21" @default.
- W2808396915 creator A5020997770 @default.
- W2808396915 creator A5048893457 @default.
- W2808396915 creator A5068167422 @default.
- W2808396915 date "2018-06-11" @default.
- W2808396915 modified "2023-09-26" @default.
- W2808396915 title "Tweedie family of generalized linear models with distribution-free random effects for skewed longitudinal data" @default.
- W2808396915 cites W1535258181 @default.
- W2808396915 cites W1858619110 @default.
- W2808396915 cites W1979474066 @default.
- W2808396915 cites W1984007390 @default.
- W2808396915 cites W1989338016 @default.
- W2808396915 cites W1991424745 @default.
- W2808396915 cites W1997199458 @default.
- W2808396915 cites W1997921097 @default.
- W2808396915 cites W2006710028 @default.
- W2808396915 cites W2008668111 @default.
- W2808396915 cites W2010547933 @default.
- W2808396915 cites W2059586969 @default.
- W2808396915 cites W2060375870 @default.
- W2808396915 cites W2069891317 @default.
- W2808396915 cites W2076595397 @default.
- W2808396915 cites W2094400652 @default.
- W2808396915 cites W2106346041 @default.
- W2808396915 cites W2106638777 @default.
- W2808396915 cites W2149860264 @default.
- W2808396915 cites W2154561958 @default.
- W2808396915 cites W2326711454 @default.
- W2808396915 cites W2338469198 @default.
- W2808396915 cites W2471498685 @default.
- W2808396915 cites W4244611409 @default.
- W2808396915 cites W2116413104 @default.
- W2808396915 cites W2324431401 @default.
- W2808396915 cites W2593353980 @default.
- W2808396915 doi "https://doi.org/10.1002/sim.7841" @default.
- W2808396915 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29888505" @default.
- W2808396915 hasPublicationYear "2018" @default.
- W2808396915 type Work @default.
- W2808396915 sameAs 2808396915 @default.
- W2808396915 citedByCount "6" @default.
- W2808396915 countsByYear W28083969152018 @default.
- W2808396915 countsByYear W28083969152019 @default.
- W2808396915 countsByYear W28083969152022 @default.
- W2808396915 countsByYear W28083969152023 @default.
- W2808396915 crossrefType "journal-article" @default.
- W2808396915 hasAuthorship W2808396915A5020997770 @default.
- W2808396915 hasAuthorship W2808396915A5048893457 @default.
- W2808396915 hasAuthorship W2808396915A5068167422 @default.
- W2808396915 hasConcept C105795698 @default.
- W2808396915 hasConcept C122342681 @default.
- W2808396915 hasConcept C126322002 @default.
- W2808396915 hasConcept C149782125 @default.
- W2808396915 hasConcept C153720581 @default.
- W2808396915 hasConcept C16012445 @default.
- W2808396915 hasConcept C163175372 @default.
- W2808396915 hasConcept C168743327 @default.
- W2808396915 hasConcept C178650346 @default.
- W2808396915 hasConcept C2780598303 @default.
- W2808396915 hasConcept C28826006 @default.
- W2808396915 hasConcept C33923547 @default.
- W2808396915 hasConcept C41008148 @default.
- W2808396915 hasConcept C71924100 @default.
- W2808396915 hasConcept C95190672 @default.
- W2808396915 hasConceptScore W2808396915C105795698 @default.
- W2808396915 hasConceptScore W2808396915C122342681 @default.
- W2808396915 hasConceptScore W2808396915C126322002 @default.
- W2808396915 hasConceptScore W2808396915C149782125 @default.
- W2808396915 hasConceptScore W2808396915C153720581 @default.
- W2808396915 hasConceptScore W2808396915C16012445 @default.
- W2808396915 hasConceptScore W2808396915C163175372 @default.
- W2808396915 hasConceptScore W2808396915C168743327 @default.
- W2808396915 hasConceptScore W2808396915C178650346 @default.
- W2808396915 hasConceptScore W2808396915C2780598303 @default.
- W2808396915 hasConceptScore W2808396915C28826006 @default.
- W2808396915 hasConceptScore W2808396915C33923547 @default.
- W2808396915 hasConceptScore W2808396915C41008148 @default.
- W2808396915 hasConceptScore W2808396915C71924100 @default.
- W2808396915 hasConceptScore W2808396915C95190672 @default.
- W2808396915 hasFunder F4320334593 @default.
- W2808396915 hasIssue "24" @default.
- W2808396915 hasLocation W28083969151 @default.
- W2808396915 hasLocation W28083969152 @default.
- W2808396915 hasOpenAccess W2808396915 @default.
- W2808396915 hasPrimaryLocation W28083969151 @default.
- W2808396915 hasRelatedWork W144895551 @default.
- W2808396915 hasRelatedWork W1872206686 @default.
- W2808396915 hasRelatedWork W1987447492 @default.
- W2808396915 hasRelatedWork W1992914993 @default.
- W2808396915 hasRelatedWork W2040713875 @default.
- W2808396915 hasRelatedWork W2942141241 @default.
- W2808396915 hasRelatedWork W3204689413 @default.
- W2808396915 hasRelatedWork W4239710992 @default.
- W2808396915 hasRelatedWork W85196187 @default.
- W2808396915 hasRelatedWork W2740454639 @default.
- W2808396915 hasVolume "37" @default.
- W2808396915 isParatext "false" @default.
- W2808396915 isRetracted "false" @default.