Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808419999> ?p ?o ?g. }
- W2808419999 endingPage "1570" @default.
- W2808419999 startingPage "1570" @default.
- W2808419999 abstract "Thermal load and indoor comfort level are two important building performance indicators, rapid predictions of which can help significantly reduce the computation time during design optimization. In this paper, a three-step approach is used to develop and evaluate prediction models. Firstly, the Latin Hypercube Sampling Method (LHSM) is used to generate a representative 19-dimensional design database and DesignBuilder is then used to obtain the thermal load and discomfort degree hours through simulation. Secondly, samples from the database are used to develop and validate seven prediction models, using data mining approaches including multilinear regression (MLR), chi-square automatic interaction detector (CHAID), exhaustive CHAID (ECHAID), back-propagation neural network (BPNN), radial basis function network (RBFN), classification and regression trees (CART), and support vector machines (SVM). It is found that the MLR and BPNN models outperform the others in the prediction of thermal load with average absolute error of less than 1.19%, and the BPNN model is the best at predicting discomfort degree hour with 0.62% average absolute error. Finally, two hybrid models—MLR (MLR + BPNN) and MLR-BPNN—are developed. The MLR-BPNN models are found to be the best prediction models, with average absolute error of 0.82% in thermal load and 0.59% in discomfort degree hour." @default.
- W2808419999 created "2018-06-21" @default.
- W2808419999 creator A5037987990 @default.
- W2808419999 creator A5057618215 @default.
- W2808419999 creator A5067027350 @default.
- W2808419999 creator A5073325178 @default.
- W2808419999 creator A5085426080 @default.
- W2808419999 date "2018-06-14" @default.
- W2808419999 modified "2023-10-18" @default.
- W2808419999 title "Development of Building Thermal Load and Discomfort Degree Hour Prediction Models Using Data Mining Approaches" @default.
- W2808419999 cites W1966602182 @default.
- W2808419999 cites W1967379861 @default.
- W2808419999 cites W1969885422 @default.
- W2808419999 cites W1975202313 @default.
- W2808419999 cites W1996626076 @default.
- W2808419999 cites W2000424045 @default.
- W2808419999 cites W2025221530 @default.
- W2808419999 cites W2032632859 @default.
- W2808419999 cites W2037767895 @default.
- W2808419999 cites W2041773651 @default.
- W2808419999 cites W2059912108 @default.
- W2808419999 cites W2133160781 @default.
- W2808419999 cites W2151593681 @default.
- W2808419999 cites W2153476503 @default.
- W2808419999 cites W2171277043 @default.
- W2808419999 cites W2173089344 @default.
- W2808419999 cites W2173501521 @default.
- W2808419999 cites W2342414455 @default.
- W2808419999 cites W2474598182 @default.
- W2808419999 cites W2605614336 @default.
- W2808419999 cites W2622534417 @default.
- W2808419999 cites W2756532498 @default.
- W2808419999 cites W2757702615 @default.
- W2808419999 cites W2758403993 @default.
- W2808419999 cites W2762147537 @default.
- W2808419999 cites W2766582232 @default.
- W2808419999 cites W2767695914 @default.
- W2808419999 cites W2769395281 @default.
- W2808419999 cites W2792786496 @default.
- W2808419999 cites W2802729774 @default.
- W2808419999 cites W2962868086 @default.
- W2808419999 cites W340345707 @default.
- W2808419999 doi "https://doi.org/10.3390/en11061570" @default.
- W2808419999 hasPublicationYear "2018" @default.
- W2808419999 type Work @default.
- W2808419999 sameAs 2808419999 @default.
- W2808419999 citedByCount "15" @default.
- W2808419999 countsByYear W28084199992019 @default.
- W2808419999 countsByYear W28084199992020 @default.
- W2808419999 countsByYear W28084199992021 @default.
- W2808419999 countsByYear W28084199992022 @default.
- W2808419999 crossrefType "journal-article" @default.
- W2808419999 hasAuthorship W2808419999A5037987990 @default.
- W2808419999 hasAuthorship W2808419999A5057618215 @default.
- W2808419999 hasAuthorship W2808419999A5067027350 @default.
- W2808419999 hasAuthorship W2808419999A5073325178 @default.
- W2808419999 hasAuthorship W2808419999A5085426080 @default.
- W2808419999 hasBestOaLocation W28084199991 @default.
- W2808419999 hasConcept C105795698 @default.
- W2808419999 hasConcept C119857082 @default.
- W2808419999 hasConcept C121332964 @default.
- W2808419999 hasConcept C122383733 @default.
- W2808419999 hasConcept C12267149 @default.
- W2808419999 hasConcept C124101348 @default.
- W2808419999 hasConcept C139945424 @default.
- W2808419999 hasConcept C150217764 @default.
- W2808419999 hasConcept C154945302 @default.
- W2808419999 hasConcept C16023879 @default.
- W2808419999 hasConcept C19499675 @default.
- W2808419999 hasConcept C20820323 @default.
- W2808419999 hasConcept C24890656 @default.
- W2808419999 hasConcept C2775997480 @default.
- W2808419999 hasConcept C33923547 @default.
- W2808419999 hasConcept C41008148 @default.
- W2808419999 hasConcept C50644808 @default.
- W2808419999 hasConcept C83546350 @default.
- W2808419999 hasConcept C84525736 @default.
- W2808419999 hasConceptScore W2808419999C105795698 @default.
- W2808419999 hasConceptScore W2808419999C119857082 @default.
- W2808419999 hasConceptScore W2808419999C121332964 @default.
- W2808419999 hasConceptScore W2808419999C122383733 @default.
- W2808419999 hasConceptScore W2808419999C12267149 @default.
- W2808419999 hasConceptScore W2808419999C124101348 @default.
- W2808419999 hasConceptScore W2808419999C139945424 @default.
- W2808419999 hasConceptScore W2808419999C150217764 @default.
- W2808419999 hasConceptScore W2808419999C154945302 @default.
- W2808419999 hasConceptScore W2808419999C16023879 @default.
- W2808419999 hasConceptScore W2808419999C19499675 @default.
- W2808419999 hasConceptScore W2808419999C20820323 @default.
- W2808419999 hasConceptScore W2808419999C24890656 @default.
- W2808419999 hasConceptScore W2808419999C2775997480 @default.
- W2808419999 hasConceptScore W2808419999C33923547 @default.
- W2808419999 hasConceptScore W2808419999C41008148 @default.
- W2808419999 hasConceptScore W2808419999C50644808 @default.
- W2808419999 hasConceptScore W2808419999C83546350 @default.
- W2808419999 hasConceptScore W2808419999C84525736 @default.
- W2808419999 hasFunder F4320321618 @default.
- W2808419999 hasFunder F4320322163 @default.