Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808444344> ?p ?o ?g. }
- W2808444344 endingPage "925" @default.
- W2808444344 startingPage "925" @default.
- W2808444344 abstract "The nearshore coastal ocean is one of the most dynamic and biologically productive regions on our planet, supporting a wide range of ecosystem services. It is also one of the most vulnerable regions, increasingly exposed to anthropogenic pressure. In the context of climate change, monitoring changes in nearshore coastal waters requires systematic and sustained observations of key essential climate variables (ECV), one of which is sea surface temperature (SST). As temperature influences physical, chemical and biological processes within coastal systems, accurate monitoring is crucial for detecting change. SST is an ECV that can be measured systematically from satellites. Yet, owing to a lack of adequate in situ data, the accuracy and precision of satellite SST at the coastline are not well known. In a prior study, we attempted to address this by taking advantage of in situ SST measurements collected by a group of surfers. Here, we make use of a three year time-series (2014–2017) of in situ water temperature measurements collected using a temperature logger (recording every 30 min) deployed within a kelp forest (∼3 m below chart datum) at a subtidal rocky reef site near Plymouth, UK. We compared the temperature measurements with three other independent in situ SST datasets in the region, from two autonomous buoys located ∼7 km and ∼33 km from the coastline, and from a group of surfers at two beaches near the kelp site. The three datasets showed good agreement, with discrepancies consistent with the spatial separation of the sites. The in situ SST measurements collected from the kelp site and the two autonomous buoys were matched with operational Advanced Very High Resolution Radiometer (AVHRR) EO SST passes, all within 1 h of the in situ data. By extracting data from the closest satellite pixel to the three sites, we observed a significant reduction in the performance of AVHRR at retrieving SST at the coastline, with root mean square differences at the kelp site over twice that observed at the two offshore buoys. Comparing the in situ water temperature data with pixels surrounding the kelp site revealed the performance of the satellite data improves when moving two to three pixels offshore and that this improvement was better when using an SST algorithm that treats each pixel independently in the retrieval process. At the three sites, we related differences between satellite and in situ SST data with a suite of atmospheric variables, collected from a nearby atmospheric observatory, and a high temporal resolution land surface temperature (LST) dataset. We found that differences between satellite and in situ SST at the coastline (kelp site) were well correlated with LST and solar zenith angle; implying contamination of the pixel by land is the principal cause of these larger differences at the coastline, as opposed to issues with atmospheric correction. This contamination could be either from land directly within the pixel, potentially impacted by errors in geo-location, or possibly through thermal adjacency effects. Our results demonstrate the value of using benthic temperature loggers for evaluating satellite SST data in coastal regions, and highlight issues with retrievals at the coastline that may inform future improvements in operational products." @default.
- W2808444344 created "2018-06-21" @default.
- W2808444344 creator A5005483974 @default.
- W2808444344 creator A5012823618 @default.
- W2808444344 creator A5013831292 @default.
- W2808444344 creator A5018359634 @default.
- W2808444344 creator A5036557557 @default.
- W2808444344 creator A5042323351 @default.
- W2808444344 creator A5048989566 @default.
- W2808444344 creator A5065506193 @default.
- W2808444344 creator A5074931237 @default.
- W2808444344 date "2018-06-12" @default.
- W2808444344 modified "2023-10-11" @default.
- W2808444344 title "Evaluating Operational AVHRR Sea Surface Temperature Data at the Coastline Using Benthic Temperature Loggers" @default.
- W2808444344 cites W1503832382 @default.
- W2808444344 cites W1664136835 @default.
- W2808444344 cites W1805030157 @default.
- W2808444344 cites W1946761713 @default.
- W2808444344 cites W1972348696 @default.
- W2808444344 cites W1987695119 @default.
- W2808444344 cites W1991442427 @default.
- W2808444344 cites W1992636993 @default.
- W2808444344 cites W1997245731 @default.
- W2808444344 cites W1997871535 @default.
- W2808444344 cites W2003969727 @default.
- W2808444344 cites W2014935632 @default.
- W2808444344 cites W2018291779 @default.
- W2808444344 cites W2023457446 @default.
- W2808444344 cites W2024375215 @default.
- W2808444344 cites W2024910142 @default.
- W2808444344 cites W2033237147 @default.
- W2808444344 cites W2043813651 @default.
- W2808444344 cites W2049103217 @default.
- W2808444344 cites W2049699234 @default.
- W2808444344 cites W2055138256 @default.
- W2808444344 cites W2058947207 @default.
- W2808444344 cites W2059033348 @default.
- W2808444344 cites W2062655401 @default.
- W2808444344 cites W2066112926 @default.
- W2808444344 cites W2072653423 @default.
- W2808444344 cites W2076901722 @default.
- W2808444344 cites W2077358591 @default.
- W2808444344 cites W2088665921 @default.
- W2808444344 cites W2095018223 @default.
- W2808444344 cites W2097315307 @default.
- W2808444344 cites W2107224678 @default.
- W2808444344 cites W2108313195 @default.
- W2808444344 cites W2129034911 @default.
- W2808444344 cites W2136884039 @default.
- W2808444344 cites W2137631906 @default.
- W2808444344 cites W2147690605 @default.
- W2808444344 cites W2162905331 @default.
- W2808444344 cites W2163520583 @default.
- W2808444344 cites W2166606947 @default.
- W2808444344 cites W2172988380 @default.
- W2808444344 cites W2178526283 @default.
- W2808444344 cites W2184125287 @default.
- W2808444344 cites W2266786777 @default.
- W2808444344 cites W2286823774 @default.
- W2808444344 cites W2297346659 @default.
- W2808444344 cites W2326124498 @default.
- W2808444344 cites W2473009902 @default.
- W2808444344 cites W2475365962 @default.
- W2808444344 cites W2494203640 @default.
- W2808444344 cites W2515119648 @default.
- W2808444344 cites W2521082330 @default.
- W2808444344 cites W2522997036 @default.
- W2808444344 cites W2546773893 @default.
- W2808444344 cites W2560284444 @default.
- W2808444344 cites W2736237772 @default.
- W2808444344 cites W2751405592 @default.
- W2808444344 cites W2765241994 @default.
- W2808444344 cites W2770640683 @default.
- W2808444344 cites W2783883253 @default.
- W2808444344 cites W2785632293 @default.
- W2808444344 doi "https://doi.org/10.3390/rs10060925" @default.
- W2808444344 hasPublicationYear "2018" @default.
- W2808444344 type Work @default.
- W2808444344 sameAs 2808444344 @default.
- W2808444344 citedByCount "32" @default.
- W2808444344 countsByYear W28084443442018 @default.
- W2808444344 countsByYear W28084443442019 @default.
- W2808444344 countsByYear W28084443442020 @default.
- W2808444344 countsByYear W28084443442021 @default.
- W2808444344 countsByYear W28084443442022 @default.
- W2808444344 countsByYear W28084443442023 @default.
- W2808444344 crossrefType "journal-article" @default.
- W2808444344 hasAuthorship W2808444344A5005483974 @default.
- W2808444344 hasAuthorship W2808444344A5012823618 @default.
- W2808444344 hasAuthorship W2808444344A5013831292 @default.
- W2808444344 hasAuthorship W2808444344A5018359634 @default.
- W2808444344 hasAuthorship W2808444344A5036557557 @default.
- W2808444344 hasAuthorship W2808444344A5042323351 @default.
- W2808444344 hasAuthorship W2808444344A5048989566 @default.
- W2808444344 hasAuthorship W2808444344A5065506193 @default.
- W2808444344 hasAuthorship W2808444344A5074931237 @default.
- W2808444344 hasBestOaLocation W28084443441 @default.
- W2808444344 hasConcept C110872660 @default.