Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808519003> ?p ?o ?g. }
- W2808519003 endingPage "194" @default.
- W2808519003 startingPage "180" @default.
- W2808519003 abstract "Abstract The Late Triassic Muguayuan W deposit is located in the middle of the Jiangnan Orogen, South China. This deposit is characterized by veinlet-disseminated W mineralization that developed in the Sanxianba granitic porphyry stock. The ore minerals are mainly scheelite with minor molybdenite and wolframite. Scheelite mineralization was closely related to greisenization and phyllic alteration, and took place in two stages. Stage I involved scheelite ± wolframite ± molybdenite + quartz veinlet and disseminated mineralization, whereas Stage II resulted in scheelite + quartz + sericite veinlet mineralization. Sulfide and quartz + calcite ± pyrite veinlets formed during the post-ore stage. Scheelites from the two mineralization stages have different textures and compositions. Cathodoluminescence (CL) images of Stage I scheelites reveal two generations of growth (I-a and I-b). Stage I-a scheelite is dark under CL with oscillatory zoning, and has light rare earth element (LREE)-enriched chondrite-normalized patterns, negative Eu anomalies, and high total REE contents. Stage I-b scheelite forms rim overgrowths on Stage I-a scheelite, is bright under CL, and shows positive Eu anomalies and relatively low REE contents. Although Stage II scheelites are nearly uniform under CL, they can be subdivided into two generations according to their REE systematics. Stage II-a scheelite yields middle REE (MREE)-enriched chondrite-normalized patterns, with negative Eu anomalies, whereas Stage II-b scheelite has MREE-depleted patterns with positive Eu anomalies. Minor amounts of apatite formed in both stages of mineralization. Stage I apatite contains 1370–1930 ppm Mn and 97.7–127 ppm Sr, whereas Stage II apatite has lower Mn (111–158 ppm) and higher Sr (2170–4690 ppm) concentrations. The distinct trace elements compositions of the scheelite and apatite from the two stages identify two ore-forming fluids that had different origins and compositions. The ore-forming fluids in Stage I-a were relatively reduced magma-derived fluids with high Mo, Mn, Nb, and Ta, and low Sr. Fluid modeling shows that the initial fluids of Stage I-a were LREE-enriched with negative Eu anomalies, similar to the Sanxianba granitic porphyry. Precipitation of early apatite and scheelite, as well as plagioclase decomposition, altered the fluid composition and led to relative depletions in REE, Nb, and Ta, and increases of Eu and Sr in the Stage I-b fluids. Cooling of these fluids and the addition of recycled meteoric water led the fluids to become relatively oxidized and Sr-rich; Stage II scheelite precipitated from these fluids. Precipitation of Stage II-a scheelite resulted in the Stage II-b fluids becoming progressively MREE-depleted. Extensive alteration, especially greisenization and phyllic alteration, led to plagioclase decomposition, which provided the Ca necessary for scheelite mineralization. This process was important in generating the W mineralization in the Muguayuan deposit, and perhaps for other granite-hosted, veinlet-disseminated scheelite deposits in the Jiangnan Orogen." @default.
- W2808519003 created "2018-06-21" @default.
- W2808519003 creator A5018459086 @default.
- W2808519003 creator A5030917482 @default.
- W2808519003 creator A5038170876 @default.
- W2808519003 creator A5046860067 @default.
- W2808519003 creator A5049958571 @default.
- W2808519003 creator A5060614516 @default.
- W2808519003 date "2018-08-01" @default.
- W2808519003 modified "2023-10-01" @default.
- W2808519003 title "Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in-situ trace element analyses of scheelite" @default.
- W2808519003 cites W1791182819 @default.
- W2808519003 cites W1792263819 @default.
- W2808519003 cites W1964576151 @default.
- W2808519003 cites W1966479677 @default.
- W2808519003 cites W1970672357 @default.
- W2808519003 cites W1972337416 @default.
- W2808519003 cites W1974336211 @default.
- W2808519003 cites W1974389618 @default.
- W2808519003 cites W1976264605 @default.
- W2808519003 cites W1977344524 @default.
- W2808519003 cites W1994686000 @default.
- W2808519003 cites W2001042732 @default.
- W2808519003 cites W2002137369 @default.
- W2808519003 cites W2003892405 @default.
- W2808519003 cites W2013810995 @default.
- W2808519003 cites W2014223134 @default.
- W2808519003 cites W2015069687 @default.
- W2808519003 cites W2015782552 @default.
- W2808519003 cites W2016653852 @default.
- W2808519003 cites W2017024871 @default.
- W2808519003 cites W2018641192 @default.
- W2808519003 cites W2031793064 @default.
- W2808519003 cites W2032386561 @default.
- W2808519003 cites W2037429669 @default.
- W2808519003 cites W2039323682 @default.
- W2808519003 cites W2051805987 @default.
- W2808519003 cites W2054489874 @default.
- W2808519003 cites W2054932225 @default.
- W2808519003 cites W2065940550 @default.
- W2808519003 cites W2070298777 @default.
- W2808519003 cites W2078320350 @default.
- W2808519003 cites W2081666993 @default.
- W2808519003 cites W2082583308 @default.
- W2808519003 cites W2086213893 @default.
- W2808519003 cites W2087494921 @default.
- W2808519003 cites W2093740880 @default.
- W2808519003 cites W2095251721 @default.
- W2808519003 cites W2128758986 @default.
- W2808519003 cites W2130665577 @default.
- W2808519003 cites W2133042542 @default.
- W2808519003 cites W2134850932 @default.
- W2808519003 cites W2154045529 @default.
- W2808519003 cites W2156540401 @default.
- W2808519003 cites W2162641436 @default.
- W2808519003 cites W2262537693 @default.
- W2808519003 cites W2326706477 @default.
- W2808519003 cites W2330227385 @default.
- W2808519003 cites W2551922399 @default.
- W2808519003 cites W2565253666 @default.
- W2808519003 cites W2613770059 @default.
- W2808519003 cites W2667909753 @default.
- W2808519003 cites W2741275900 @default.
- W2808519003 cites W2770444383 @default.
- W2808519003 cites W2780002623 @default.
- W2808519003 cites W2797615508 @default.
- W2808519003 cites W2982208897 @default.
- W2808519003 cites W4255137559 @default.
- W2808519003 doi "https://doi.org/10.1016/j.oregeorev.2018.06.005" @default.
- W2808519003 hasPublicationYear "2018" @default.
- W2808519003 type Work @default.
- W2808519003 sameAs 2808519003 @default.
- W2808519003 citedByCount "42" @default.
- W2808519003 countsByYear W28085190032018 @default.
- W2808519003 countsByYear W28085190032019 @default.
- W2808519003 countsByYear W28085190032020 @default.
- W2808519003 countsByYear W28085190032021 @default.
- W2808519003 countsByYear W28085190032022 @default.
- W2808519003 countsByYear W28085190032023 @default.
- W2808519003 crossrefType "journal-article" @default.
- W2808519003 hasAuthorship W2808519003A5018459086 @default.
- W2808519003 hasAuthorship W2808519003A5030917482 @default.
- W2808519003 hasAuthorship W2808519003A5038170876 @default.
- W2808519003 hasAuthorship W2808519003A5046860067 @default.
- W2808519003 hasAuthorship W2808519003A5049958571 @default.
- W2808519003 hasAuthorship W2808519003A5060614516 @default.
- W2808519003 hasConcept C127313418 @default.
- W2808519003 hasConcept C17409809 @default.
- W2808519003 hasConcept C178790620 @default.
- W2808519003 hasConcept C185592680 @default.
- W2808519003 hasConcept C191897082 @default.
- W2808519003 hasConcept C192562407 @default.
- W2808519003 hasConcept C199289684 @default.
- W2808519003 hasConcept C2777822432 @default.
- W2808519003 hasConcept C2780652833 @default.
- W2808519003 hasConcept C34682378 @default.
- W2808519003 hasConcept C542268612 @default.
- W2808519003 hasConceptScore W2808519003C127313418 @default.