Matches in SemOpenAlex for { <https://semopenalex.org/work/W2808532172> ?p ?o ?g. }
- W2808532172 abstract "Traditional computer graphics rendering pipeline is designed for procedurally generating 2D quality images from 3D shapes with high performance. The non-differentiability due to discrete operations such as visibility computation makes it hard to explicitly correlate rendering parameters and the resulting image, posing a significant challenge for inverse rendering tasks. Recent work on differentiable rendering achieves differentiability either by designing surrogate gradients for non-differentiable operations or via an approximate but differentiable renderer. These methods, however, are still limited when it comes to handling occlusion, and restricted to particular rendering effects. We present RenderNet, a differentiable rendering convolutional network with a novel projection unit that can render 2D images from 3D shapes. Spatial occlusion and shading calculation are automatically encoded in the network. Our experiments show that RenderNet can successfully learn to implement different shaders, and can be used in inverse rendering tasks to estimate shape, pose, lighting and texture from a single image." @default.
- W2808532172 created "2018-06-21" @default.
- W2808532172 creator A5035393735 @default.
- W2808532172 creator A5053342436 @default.
- W2808532172 creator A5053958450 @default.
- W2808532172 creator A5083852111 @default.
- W2808532172 date "2018-06-18" @default.
- W2808532172 modified "2023-09-23" @default.
- W2808532172 title "RenderNet: A deep convolutional network for differentiable rendering from 3D shapes" @default.
- W2808532172 cites W1677182931 @default.
- W2808532172 cites W1691728462 @default.
- W2808532172 cites W183071939 @default.
- W2808532172 cites W1901129140 @default.
- W2808532172 cites W1994794884 @default.
- W2808532172 cites W2010625607 @default.
- W2808532172 cites W2027560260 @default.
- W2808532172 cites W2069957264 @default.
- W2808532172 cites W2099471712 @default.
- W2808532172 cites W2107037917 @default.
- W2808532172 cites W2122585444 @default.
- W2808532172 cites W2122676594 @default.
- W2808532172 cites W2146578165 @default.
- W2808532172 cites W2161141071 @default.
- W2808532172 cites W2188956040 @default.
- W2808532172 cites W2190691619 @default.
- W2808532172 cites W2267877820 @default.
- W2808532172 cites W2273818272 @default.
- W2808532172 cites W2551540143 @default.
- W2808532172 cites W2555510177 @default.
- W2808532172 cites W2598591334 @default.
- W2808532172 cites W2603429625 @default.
- W2808532172 cites W2737780766 @default.
- W2808532172 cites W2767503796 @default.
- W2808532172 cites W2798291180 @default.
- W2808532172 cites W2799123546 @default.
- W2808532172 cites W2805635917 @default.
- W2808532172 cites W2953071894 @default.
- W2808532172 cites W2962912205 @default.
- W2808532172 cites W2963073614 @default.
- W2808532172 cites W2963338719 @default.
- W2808532172 cites W2963446712 @default.
- W2808532172 cites W2963453931 @default.
- W2808532172 cites W2963522749 @default.
- W2808532172 cites W2963527086 @default.
- W2808532172 cites W2963641844 @default.
- W2808532172 cites W2963730200 @default.
- W2808532172 cites W2963739349 @default.
- W2808532172 cites W2964121744 @default.
- W2808532172 cites W2964137676 @default.
- W2808532172 cites W3104141662 @default.
- W2808532172 hasPublicationYear "2018" @default.
- W2808532172 type Work @default.
- W2808532172 sameAs 2808532172 @default.
- W2808532172 citedByCount "13" @default.
- W2808532172 countsByYear W28085321722019 @default.
- W2808532172 countsByYear W28085321722020 @default.
- W2808532172 countsByYear W28085321722021 @default.
- W2808532172 crossrefType "posted-content" @default.
- W2808532172 hasAuthorship W2808532172A5035393735 @default.
- W2808532172 hasAuthorship W2808532172A5053342436 @default.
- W2808532172 hasAuthorship W2808532172A5053958450 @default.
- W2808532172 hasAuthorship W2808532172A5083852111 @default.
- W2808532172 hasConcept C109772839 @default.
- W2808532172 hasConcept C11413529 @default.
- W2808532172 hasConcept C116921373 @default.
- W2808532172 hasConcept C121684516 @default.
- W2808532172 hasConcept C134306372 @default.
- W2808532172 hasConcept C154945302 @default.
- W2808532172 hasConcept C173552908 @default.
- W2808532172 hasConcept C177681979 @default.
- W2808532172 hasConcept C189059883 @default.
- W2808532172 hasConcept C202615002 @default.
- W2808532172 hasConcept C205711294 @default.
- W2808532172 hasConcept C31972630 @default.
- W2808532172 hasConcept C33923547 @default.
- W2808532172 hasConcept C36816356 @default.
- W2808532172 hasConcept C41008148 @default.
- W2808532172 hasConcept C45374587 @default.
- W2808532172 hasConcept C66629338 @default.
- W2808532172 hasConcept C77660652 @default.
- W2808532172 hasConceptScore W2808532172C109772839 @default.
- W2808532172 hasConceptScore W2808532172C11413529 @default.
- W2808532172 hasConceptScore W2808532172C116921373 @default.
- W2808532172 hasConceptScore W2808532172C121684516 @default.
- W2808532172 hasConceptScore W2808532172C134306372 @default.
- W2808532172 hasConceptScore W2808532172C154945302 @default.
- W2808532172 hasConceptScore W2808532172C173552908 @default.
- W2808532172 hasConceptScore W2808532172C177681979 @default.
- W2808532172 hasConceptScore W2808532172C189059883 @default.
- W2808532172 hasConceptScore W2808532172C202615002 @default.
- W2808532172 hasConceptScore W2808532172C205711294 @default.
- W2808532172 hasConceptScore W2808532172C31972630 @default.
- W2808532172 hasConceptScore W2808532172C33923547 @default.
- W2808532172 hasConceptScore W2808532172C36816356 @default.
- W2808532172 hasConceptScore W2808532172C41008148 @default.
- W2808532172 hasConceptScore W2808532172C45374587 @default.
- W2808532172 hasConceptScore W2808532172C66629338 @default.
- W2808532172 hasConceptScore W2808532172C77660652 @default.
- W2808532172 hasOpenAccess W2808532172 @default.
- W2808532172 hasRelatedWork W1522301498 @default.